Supporting Information for

Ferroelectric switching driven photocatalytic overall water splitting in

As/In₂Se₃ heterostructure

Rui Xiong^{1,2}, Lili Zhang^{3,*}, Cuilian Wen¹, Masakazu Anpo⁴, Yee Sin Ang^{2,*}, Baisheng Sa^{1,*} ¹Multiscale Multiscale Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China ²Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372 ³Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China ⁴State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China

Corresponding Authors: *zhlili@zzu.edu.cn (L. Zhang); *yeesin_ang@sutd.edu.sg (Y. S, Ang) *bssa@fzu.edu.cn (B. Sa)

Figure S1. The top and side views of the crystal structure of (a) As and (b) In_2Se_3 monolayers. The orientation of the intrinsic electric field of In_2Se_3 points from the lower surface to the upper surface.

Figure S2. The band decomposed charge densities of the (a) As/In₂Se₃-P↑ and (b) As/In₂Se₃-P↓ heterostructures. The isosurface value is set 0.002 e·bohr⁻³.

Figure S3. The electron-hole (e-h) recombination dynamic of (a) As/In₂Se₃-P \uparrow and (b) As/In₂Se₃-P \downarrow heterostructures.

Figure S4. The averaged NAC of electronic states involved in the interface charge transfer and e-h recombination dynamics of (a) As/In₂Se₃-P \uparrow and (b) As/In₂Se₃-P \downarrow . The Fourier transform (FT) spectra of some key time-dependent Kohn-Sham energy states of (c) As/In₂Se₃-P \uparrow and (d) As/In₂Se₃-P \downarrow .

Figure S5. The calculation optical absorption coefficients of As/In₂Se₃-P↑ and As/In₂Se₃-P↓ heterostructures. The As and In₂Se₃ monolayers are also plotted for the comparison. The right axis represents the solar irradiance of the solar spectrum as shown in background.

Figure S6. The atom-contributed density of states (DOS) of P-doping As/In₂Se₃-P↓ heterostructure under the HSE06 functional level.

Туре	Stacking	a (Å)	<i>d</i> (Å)	$E_{\rm f}({\rm eV})$	$E_{\rm b}({\rm meV/\AA^2})$			
As/In₂Se₃↑	Ι	7.120	3.29	-0.6014	-14.51416			
	II	7.120	3.42	-0.6062	-14.56687			
	III	7.120	3.41	-0.6062	-14.56743			
As/In ₂ Se ₃ ↓	Ι	7.110	3.40	-0.6724	-13.15628			
	II	7.110	3.50	-0.6750	-13.21327			
	III	7.110	3.50	-0.6750	-13.21329			

Table S1. The calculated lattice constant a, interlayer distant d, formation energy $E_{\rm f}$, and binding energy $E_{\rm b}$ of As/In₂Se₃-upper and As/In₂Se₃-bottom vdW heterostructure under different stacking configurations

monolayer								
	Carrier type	$E_l(eV)$	C_{2D} (N m ⁻¹)	m*/m0	$\mu (cm^2 V^{-1} s^{-1})$			
In ₂ Se ₃	e	6.11	209.67	0.23	1531.45			
	h	5.25	209.67	2.65	15.17			
As	e	1.09	80.67	0.76	1656.13			
	h	6.96	80.67	0.52	87.54			
As/In ₂ Se ₃ -P [†]	e	5.33	327.81	0.23	3146.45			
	h	2.20	327.81	0.47	4235.70			
As/In ₂ Se ₃ -P↓	e	1.46	336.14	0.27	30394.75			
	h	7.79	336.14	0.48	344.96			

Table S2. The deformation potential constant (E_l) , elastic modulus (C_{2D}) , effective mass (m^*) and carrier mobility (μ) of As/In₂Se₃ vdW heterostructure and the corresponding As and In₂Se₃