Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supplementary material

Enhanced CO poisoning resistance and hydrogen storage in

Palladium/Metal-organic framework composites

Li Hu^a, Degao Wang^a, Feilong Yang^a, Yaqi Song^a, Manquan Fang^a, Xin

Xiang^a, Renjin Xiong^a, Guikai Zhang^a, Xiaolong Wang^{a*}, Tao Tang^{ab*}

^a Institute of Materials, China Academy of Engineering Physics, P. O.

Box 9071-12, Mianyang 621907, China

^b Science and Technology on Surface Physics and Chemistry Laboratory,

Mianyang 621907, China

Email: tangtao@caep.cn, wangxiaolong@caep.cn

Content

Fable S1 Textural properties of MOF-74(Ni) and Pd/ MOF-74(Ni).	2
Fig. S1 Survey spectrum of MOF-74(Ni) and 1 wt.%, 5 wt.% and 10 wt.% Pd/MOF-74(Ni)	2
Fig. S2 SEM morphologies of (a) MOF-74(Ni), (b-d) 1 wt.%, 5 wt.% and 10 wt.% Pd/MOF-74(Ni)	2
Fig. S3 TEM images Pd NPs (a) low magnification and (b) high magnification, (c) SAED pattern	3
ig. S4 The SEM image of sponge palladium	3
Fable S2 Dual Site Langmuir (DSL) model fitting parameter for CO on MOF-74(Ni)	3
Fig. S5 (a) the fitting curves under different temperature; (b) $-Q_{st}$ fitting curve of CO absorption capacity at 0.5 nmol/g of MOF-74(Ni)	4
Fig. S6 The TG curve of MOF-74(Ni)	4
Fig. S7 Isothermal hydrogen absorption kinetics curve of Pd NPs at 293 K in H ₂ and CO/H ₂ =0.1%	4
Fable S3 Saturated hydrogen absorption and the time required to reach equilibrium (t _e) of different Pd NPs oading content in different CO concentration	5
Fig. S8 The H_2 absorption curves of sponge palladium in 1% CO atmosphere at different temperatures	5
Fig. S9 The H_2 absorption curves of Pd/MOF-74(Ni) in different CO concentration (a) H_2 (b) 0.1% CO, (c) 1% CO, (d) 5% CO at 293 K	6
Fig. S10 The H ₂ absorption curves of Pd/MOF-74(Ni) at different temperatures (a) 278 K, (b) 293 K, (c) 313 K 33 K in 1% CO concentration atmosphere	., (d) 6
Fable S4 Fitting results of JMAK model of 1 wt.% Pd/MOF-74(Ni)	7
Fable S5 Fitting results of Ea of 1 wt.% Pd/MOF-74(Ni)	7
Fig. S11 Fitting curves of E _a according to JMAK model of Pd/MOF-74(Ni) with 1 wt.%, 5 wt.%, and 10 wt.% INP loading	Pd 8
Fable S6 Saturated hydrogen absorption and the time required to reach equilibrium (te) of different Pd NPs at t	he
th cycle in 1% CO concentration at 293 K	8
Fable S7 Textural properties of Pd/ MOF-74(Ni) after 5 recycles	8
ig. S12 TEM imagines of 10 wt.% Pd/MOF-74(Ni) (a) micro morphology, (b) average of Pd particle size	9
	6

Fig. S13 In-situ DRIFTS spectrums of (a) Pd and (b) MOF-74(Ni) during the heating process after CO absorption9

Sample	$S_{BET} \left(m^2/g \right)$	V_{pore} (cm ³ /g)	D _{pore} (Å)
MOF-74(Ni)	1121	0.49	12
1 wt.% Pd/ MOF-74(Ni)	682	0.26	15
5 wt.% Pd/ MOF-74(Ni)	247	0.18	29
10 wt.% Pd/ MOF-74(Ni)	81	0.012	35

Table S1 Textural properties of MOF-74(Ni) and Pd/ MOF-74(Ni)

Fig. S1 Survey spectrum of MOF-74(Ni) and 1 wt.%, 5 wt.% and 10 wt.% Pd/MOF-74(Ni) $^{74}(\mathrm{Ni})$

Fig. S2 SEM morphologies of (a) MOF-74(Ni), (b-d) 1 wt.%, 5 wt.% and 10 wt.% Pd/MOF-74(Ni)

Fig. S3 TEM images Pd NPs (a) low magnification and (b) high magnification, (c) SAED pattern.

Fig. S4 The SEM image of sponge palladium

Temperature / K	Fitting parameter				
	\mathbf{q}_1	\mathbf{k}_1	q_2	k_2	R ²
278	2.12	26.24	2.72	0.38	0.997
293	2.17	18.65	2.59	0.29	0.998
303	1.84	4.64	2.85	0.22	0.998
313	3.85	0.45	0.95	0.03	0.999

Table S2 Dual Site Langmuir (DSL) model fitting parameter for CO on MOF-74(Ni)

Fig. S5 (a) the fitting curves under different temperature; (b) $-Q_{st}$ fitting curve of CO absorption capacity at 0.5 mmol/g of MOF-74(Ni)

Fig. S7 Isothermal hydrogen absorption kinetics curve of Pd NPs at 293 K in H_2 and $CO/H_2=0.1\%$.

		H_2	0.1% CO	1% CO	5% CO
1 wt.%	max H/Pd	0.78	0.75	0.72	0.70
	t _e	150 s	1000 s	2450 s	4150 s
5 wt.%	max H/Pd	0.75	0.73	0.71	0.68
	t _e	125 s	2300 s	2800 s	5250 s
10 0/	max H/Pd	0.70	0.70	0.69	0.66
10 Wt.%	t _e	75 s	2600 s	3520 s	6500 s
Pd	max H/Pd	0.65	0.65	0.64	0.56
	t _e	30 s	5.5 h	30 h	150 h

Table S3 Saturated hydrogen absorption and the time required to reach equilibrium (t_e)of different Pd NPs loading content in different CO concentration

Fig. S8 The H₂ absorption curves of sponge palladium in 1% CO atmosphere at different temperatures

Fig. S9 The H_2 absorption curves of Pd/MOF-74(Ni) in different CO concentration (a) H_2 (b) 0.1% CO, (c) 1% CO, (d) 5% CO at 293 K

Fig. S10 The H₂ absorption curves of Pd/MOF-74(Ni) at different temperatures (a) 278 K, (b) 293 K, (c) 313 K, (d) 333 K in 1% CO concentration atmosphere

Pd loading content	Temperature/(K)	Fitting equation	\mathbb{R}^2
	278	y=0.57×t-2.65	0.992
$1 \cdots t 0/$	290	y=0.46×t-2.06	0.991
1 Wt.70	313	y=0.46×t-1.93	0.989
	333	y=0.52×t-1.62	0.981
	278	y=0.60×t-3.11	0.997
5 wt.%	290	y=0.57×t-2.84	0.989
	313	y=0.50×t-2.2	0.986
	333	y=0.39×t-1.59	0.985
	278	y=0.78×t-4.57	0.993
10 wt.%	290	y=0.73×t-3.81	0.991
	313	y=0.43×t-1.95	0.980
	333	y=0.41×t-1.66	0.981

Table S4 Fitting results of JMAK model of 1 wt.% Pd/MOF-74(Ni)

Table S5 Fitting results of E_a of 1 wt.% Pd/MOF-74(Ni)

Pd loading content	Fitting equation	R ²
1 wt.%	y= -1.02x-0.97	0.99
5 wt.%	y= -1.8x+1.54	0.99
10 wt.%	y = -3.09x + 5.29	0.99

Fig. S11 Fitting curves of E_a according to JMAK model of Pd/MOF-74(Ni) with 1 wt.%, 5 wt.%, and 10 wt.% Pd NP loading

Table S6 Saturated hydrogen ab	sorption and the tim	ne required to reach	equilibrium
(te) of different Pd NPs at t	he 5th cycle in 1%	CO concentration at	t 293 K

Sample	max H/Pd	t _e
1 wt.% Pd/ MOF-74(Ni)	0.72	2470 s
5 wt.% Pd/ MOF-74(Ni)	0.71	2850
10 wt.% Pd/ MOF-74(Ni)	0.67	4530 s

Table S7 Textural properties of Pd/ MOF-74(Ni) after 5 recycles

Sample	$S_{BET} \left(m^2/g \right)$	V_{pore} (cm ³ /g)	D _{pore} (Å)
1 wt.% Pd/ MOF-74(Ni)	675	0.24	16
5 wt.% Pd/ MOF-74(Ni)	239	0.17	31
10 wt.% Pd/ MOF-74(Ni)	28	0.009	64

Fig. S12 TEM imagines of 10 wt.% Pd/MOF-74(Ni) (a) micro morphology, (b) average of Pd particle size histogram.

Fig. S13 *In-situ* DRIFTS spectrums of (a) Pd and (b) MOF-74(Ni) during the heating process after CO absorption