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54 Note S1. Derivation of the relationship between wavelength and length change

55 The initial length, width, and thickness are set as L0, b0, and h0, and the values  after 

56 phase transition deformation are set as L, b, and h, respectively. Assuming the total 

57 volume remains constant during deformation and the strain rates in directions 

58 perpendicular to L-direction are the same, the volume (V) relation can be listed as:

59                           (1)LbhhbLV  000

60 From (1), by equivalent transformation, we can get (2):
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62 Since the strain rates in the width and thickness directions are the same, we also have 

63 (3):

64
                             

(3)0
0 h
L
Lh 

65 Assuming the number of helical pitches in the helical structure of the cholesteric 

66 liquid crystal is m, and the pitch length is p, we can have: 

67                              
 
(4)mph 

68 According to Bragg's law of reflection:

69
                              

(5)np

70 combining the (4) and (5), we can get (6):

71
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72  If the center wavelength of the reflected light before film deformation is , we 0

73 similarly have (7): 
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75 Because m and n are related to the intrinsic properties of the material and remain 

76 unchanged. Combining the (3), (6) and (7), we obtain (8):

77
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78 Equation (8) can be used to assist in verifying the rationality of the curve fitting in.

79
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80 Note S2. Color-based Temperature Value Prediction Model (CTVPM)

81 The input images are converted to RGB format with specified dimensions. A large 

82 amount of training data are thoroughly shuffled and then packaged into fixed-size 

83 batches before being fed into the model for training. The training process employed in 

84 the models involves several key steps, each serving a specific purpose in transforming 

85 input RGB images into accurate temperature predictions.

86 (1) Convolutional Layers (Conv2D + BN + ReLU): 

87 The process begins with convolutional layers (Conv2D) that apply filters to the input 

88 image, extracting essential features. In this model, the color features are extracted by 

89 convolutional layers. Batch normalization (BN) is applied to stabilize and accelerate 

90 training, while the ReLU (Rectified Linear Unit) activation function introduces non-

91 linearity, enabling the model to capture complex patterns.

92 (2) Pooling Layers (MaxPool): 

93 Pooling layers reduce the spatial dimensions of the feature maps. MaxPooling selects 

94 the maximum value from a specific region, effectively downsampling the image while 

95 retaining the most prominent features. This step aids in reducing the computational load 

96 and the risk of overfitting.

97 (3) Dropout Layers: 

98 Dropout layers are introduced to prevent overfitting by randomly setting a fraction 

99 of the input units to zero during training. This forces the model to learn more robust 

100 features that are not reliant on any single neuron and enhance model’s generalization 

101 ability.

102 (4) Fully Connected Layers (Dense + ReLU): 

103 Fully connected layers combine these features to form a comprehensive 

104 understanding of the input data. The ReLU activation function is again used to 

105 introduce non-linearity, enhancing the model's ability to make accurate predictions.

106 (5) Output Layer: 

107 The final dense layer produces the output, which in this model is the predicted 

108 temperature. The output temperature values are compared with the corresponding true 

109 values, and the loss is calculated using a loss function. The loss function used in 

110 CTVPM is Mean Squared Error (MSE),

111
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112 where yi is the true temperature value, y^i is the temperature prediction value output 

113 by the model, and n is the number of samples. This also marks the completion of one 

114 training epoch. In the next training epoch, the model training parameters are adjusted 

115 and optimized based on the results of the current epoch.

116 After all training epochs are completed, the resulting model training data files are 

117 available for subsequent temperature prediction.

118

119 Note S3. Color Array-based Temperature Mapping Model (CATMM)

120 Color Array-based Temperature Mapping Model uses a Generative Adversarial 

121 Network (GAN). Unlike CTVPM, its output is not a numerical value but an image. The 

122 GAN is composed of two main models: a Generator and a Discriminator, which work 

123 together in an adversarial manner to improve the accuracy of temperature prediction 

124 from the input images.

125 The input images are converted to RGB format with specified dimensions. And the 

126 pixel values are normalized to the range [-1, 1]. This normalization helps stabilize the 

127 training process by ensuring consistent input data across different images. Then the 

128 preprocessed RGB images are put into Generator and Discriminator.

129 (1) Generator Model: 

130 The Generator starts with a series of convolutional layers that reduce the spatial 

131 dimensions of the input image while extracting important features. This is followed by 

132 transposed convolutional layers (often referred to as "deconvolutional layers") that 

133 upsample the feature maps back to the original image dimensions. The final layer uses 

134 a tanh activation function to output the generated infrared image, which is then reshaped 

135 to the desired output dimensions. The image generated by the Generator is referred to 

136 as “fake image” or “output image”.

137 (2) Discriminator Model: 

138 The Discriminator follows a similar structure as the generator's encoder, but the 

139 convolutional layers in Discriminatore will extract features from “fake image” and 

140 temperature infrard image (also referred to “real image”) simultaneously. The 

141 Discriminator ends with a fully connected layer, where a sigmoid activation function 

142 compares the previously extracted features from the two types of images and ultimately 

143 outputs the probability that the "fake image" is real.

144 (3) Loss Functions:
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145 The training process uses binary cross-entropy loss as the primary loss function for 

146 both the generator and discriminator. The Discriminator's loss is computed by 

147 comparing its predictions for real images against true labels (ones) and its predictions 

148 for fake images against false labels (zeros). The total loss is the sum of these two 

149 components. The Generator's loss is calculated based on the discriminator's ability to 

150 correctly identify the generated images as fake. The generator is optimized to minimize 

151 this loss, effectively "fooling" the discriminator into classifying fake images as real. 

152 Both loss functions are normalized by the global batch size to ensure consistent scaling 

153 across different training setups.

154 Overall, for each training epoch, a batch of fake images is generated by the Generator 

155 based on the input image features. These fake images are then input into the 

156 Discriminator along with the real images, where the discriminator determines which is 

157 real and which is fake based on the extracted features. The weights are updated using 

158 the Adam optimizer according to the results, and then a new training epoch begins. This 

159 process is repeated, enabling the generator to produce images that closely resemble real 

160 images. After all training epochs, both the generator and discriminator models are saved 

161 for future use.
162



S7

163

164 Figure S1. (a) Molecular structures of materials used for fabricating BDB-containing 
165 cholesteric liquid crystal elastomer (B-CLCE). (b) Schematic diagram of the 
166 preparation process of red-reflective B-CLCE. RT: Room Temperature.
167
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168

169

170 Figure S2. (a) The chemical structure and (b) 1H NMR spectrum of BDB. 1H NMR 
171 (CDCl3, 500 MHz): BDB-δ 7.83 (s, 4H), 4.74 (m, 2H),4.49 (dd, J = 8 Hz, 7 Hz, 2H), 
172 4.18 (dd, J = 13 Hz, 5.5 Hz, 2H), 2.82 (dd, J = 7.5 Hz, 5 Hz, 4H), 1.49 (t, J = 7.5Hz, 
173 2H)
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175
176 Figure S3. Stress-strain curves of B-CLCE at different molar ratios of (a) acrylates to 
177 thiols and (b) dithiols to tetrathiols.
178
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179
180 Figure S4. The FTIR spectra of RM257, LC756, EDDET, PETMP, BDB, B-CLCE 
181 oligomer and B-CLCE.
182
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183

184 Figure S5. UV-vis reflection spectra of B-CLCE at room temperature when the mass 
185 fractions of LC756 are 4.5 wt%, 6.0 wt%, and 7.5 wt%.
186  
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187

188 Figure S6. UV-vis reflection spectra of B-CLCE at room temperature with strains of 
189 0%, 15%, 30%, 45%, 60%, 75%, 90%, 105%, 120% and 135%.
190
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191
192 10
193 Figure S7. POM images of B-CLCE with strain of 60%. The sample is rotated by 45°. 
194 Scale bar: 200 μm.
195
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196
197 Figure S8. DSC curves of B0-CLCE and B30-CLCE during the second heating cycle.
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198
199 Figure S9. The fitting results using the (a) Linear, (b) Cubic, (c) Gauss, (d) Sine, (e) 
200 Logistic and (f) Boltzmann function.
201
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202
203 Figure S10. (a) Schematic diagram of the heating-induced color change of the blue- 
204 reflective B-CLCE, (b) loss curve of the CTVPM training process, and (c) scatter plot 
205 of the temperature prediction results (about 100 data points). Scale bar: 5 mm.
206
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207
208 Figure S11. Temperature prediction results of the Color-based Temperature Value 
209 Prediction Model (CTVPM) for B-CLCEs of different shapes. Tp: predicted 
210 temperature. Scale bar: 5 mm.
211
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212

213
214
215 Figure S12. Flowchart for the preparation of B-CLCE array using dynamically bond-
216 induced oriented B-CLCE.
217
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218
219 Figure S13. Input images, output images, and real images corresponding to different 
220 epochs during the deep learning.
221
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222
223 Figure S14. Local heating with a lighter flame at the bottom-left position of the B-
224 CLCE. The results of capturing the optical images of the B-CLCE array every 5 seconds 
225 and performing temperature maps identification and mapping through CATMM. 
226 Heating with a lighter flame at the bottom-left position.
227
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228 Table S1. The layer configuration of deep learning network for Color-based 
229 Temperature Value Prediction Mmodel (CTVPM).

Layer no. Layer type Filters Kernel Size / Strides Output Dimensions

0 Input layer - - (554, 960, 3)
1 Conv2D + BN + ReLU 32 3 × 3 / same (554, 960, 3)
2 Conv2D + BN + ReLU 32 3 × 3 / same (554, 960, 3)
3 MaxPool + Dropout (0.3) - 2 × 2 / 2 (277, 480, 32)
4 Conv2D + BN + ReLU 64 3 × 3 / same (277, 480, 32)
5 Conv2D + BN + ReLU 64 3 × 3 / same (277, 480, 32)
6 MaxPool + Dropout (0.3) - 2 × 2 / 2 (139, 240, 64)
7 Conv2D + BN + ReLU 128 3 × 3 / same (139, 240, 64)
8 Conv2D + BN + ReLU 128 3 × 3 / same (139, 240, 64)
9 Conv2D + BN + ReLU 128 3 × 3 / same (139, 240, 64)
10 MaxPool + Dropout (0.3) - 2 × 2 / 2 (70, 120, 128)
11 Conv2D + BN + ReLU 256 3 × 3 / same (70, 120, 128)
12 Conv2D + BN + ReLU 256 3 × 3 / same (70, 120, 128)
13 Conv2D + BN + ReLU 256 3 × 3 / same (70, 120, 128)
14 MaxPool + Dropout (0.3) - 2 × 2 / 2 (35, 60, 256)
15 Conv2D + BN + ReLU 256 3 × 3 / same (35, 60, 256)
16 Conv2D + BN + ReLU 256 3 × 3 / same (35, 60, 256)
17 Conv2D + BN + ReLU 256 3 × 3 / same (35, 60, 256)
18 MaxPool + Dropout (0.3) - 2 × 2 / 2 (17, 30, 256)
19 Flatten - - (138240)

20
Dense + ReLU + 

Dropout (0.3)
256 - 256

21
Dense + ReLU + 

Dropout (0.3)
128 - 128

22 Dense 1 - 1

230
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231 Table S2. The layer configuration of generator model.
Layer no. Layer type Filters Kernel Size / Strides Output Dimensions

0 Input layer - - (224, 192, 3)
1 Conv2D + SeLU 32 3 × 3 / 2 (112, 96, 32)
2 MaxPool - 2 × 2 / 2 (56, 48, 32)
3 Conv2D + SeLU 64 3 × 3 / 2 (28, 24, 64)
4 MaxPool - 2 × 2 / 2 (14, 12, 64)
5 Conv2D + SeLU 128 3 × 3 / 2 (7, 6, 128)
6 Trans Conv2D + SeLU 128 3 × 3 / 2 (14, 12, 128)
7 Trans Conv2D + SeLU 64 3 × 3 / 2 (28, 24, 64)
8 Trans Conv2D + SeLU 32 3 × 3 / 2 (56, 48, 32)
9 Trans Conv2D + SeLU 16 3 × 3 / 2 (112, 96, 16)
10 Trans Conv2D + Tanh 3 3 × 3 / 2 (224, 192, 3)
11 Reshape - - (224, 192, 3)
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233 Table S3. The layer configuration of discriminator model.
Layer no. Layer type Filters Kernel Size / Strides Output Dimensions

0 Input layer - - (224, 192, 3)
1 Conv2D + SeLU 128 3 × 3 / 2 (112, 96, 128)
2 MaxPool - 2 × 2 / 2 (56, 48, 128)
3 Conv2D + SeLU 64 3 × 3 / 2 (28, 24, 64)
4 MaxPool - 2 × 2 / 2 (14, 12, 64)
5 Conv2D + SeLU 32 3 × 3 / 2 (7, 6, 32)
6 Flatten + Dropout (0.4) - - (1344)

7
Dense + SeLU + 

Dropout (0.4)
512 - 512

8
Dense + SeLU + 

Dropout (0.4)
64 - 64

9 Dense + Sigmoid 1 - 1
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235 Supporting Movie

236 Movie S1. Optical (top) and infrared (bottom) images of the heating process in one 
237 local heating source region (2×speed). Scale bar: 1cm.
238


