Optimisation of a P3 phase with superior high voltage reversibility

Stephanie F. Linnell,^{+a, b} Yong-Seok Choi,^{+c} Yingling Liao,^{a,b} Ioanna M. Pateli,^{a, b} Aaron B. Naden,^a John T. S. Irvine,^{a, b} Robert A. House,^{b, d} David O. Scanlon,^{b,e} A. Robert Armstrong^{*, a, b}

^aSchool of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, United Kingdom

^bThe Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 ORA, United Kingdom

^cDepartment of Materials and Engineering, Dankook University, 119 Dandae-ro, Cheonan 31116, South Korea

^dDepartment of Materials, University of Oxford, Parks Road, Oxford, UK

^eSchool of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K

⁺joint first author

Corresponding Author

*Email: ara@st-andrews.ac.uk

(a) P3 Na _{0.7} Mn _{0.75} Ni _{0.25} O ₂												
R _{wp} : 8.32%, GOF : 1.47												
Lattice parameters P3 Space group <i>R</i> 3 <i>m a</i> = 2.87824(12) Å, <i>c</i> = 16.8056(7) Å												
Atom	Wyckoff symbol	x/a	y/b	z/c	Occupancy	Uiso×100/ Å ²						
Mn1/Ni1	За	0	0	0	0.75/0.25	0.19(6)						
Na1	За	0	0	0.1656(9)	0.625(14)	4.7(4)						
01	За	0	0	0.394(2)	1	0.58(11)						
02	За	0	0	0.604(2)	1	0.58(11)						
(b) P3 Na _{0.7} Mn _{0.65} Ni _{0.25} Ti _{0.1} O ₂												
Lattice parameters P3 Space group <i>R</i> 3 <i>m a</i> = 2.88316(18) Å, <i>c</i> = 16.7742(11) Å												
Atom	Wyckoff symbol	x/a	y/b	z/c	Occupancy	Uiso×100/ Å ²						
Mn1/Ni1/Ti1	За	0	0	0	0.65/0.25/0.1	0.24(7)						
Na1	За	0	0	0.16589(11)	0.63(2)	5.7(6)						
01	За	0	0	0.3923(14)	1	0.5						
02	За	0	0	0.6020(15)	1	0.5						
(c) P3 Na _{0.7} Mn _{0.65} Ni _{0.25} Zn _{0.1} O ₂												
		R	្ច : 11.35%, GOF	: 2.09								
	Lattice parame	ters P3 Space	group R3m a =	=2.89046(16) Å <i>, c</i> =	= 16.7638(9) Å							
Atom	Wyckoff symbol	x/a	y/b	z/c	Occupancy	Uiso×100/ Å ²						
Mn1/Ni1/Zn1	За	0	0	0	0.65/0.25/0.1	0.33(7)						
Na1	За	0	0	0.1668(9)	0.64(2)	4.6(5)						
01	За	0	0	0.392(2)	1	0.62(13)						
02	За	0	0	0.6001(2)	1	0.6(13)						
(d) P3 Na _{0.7} Mn _{0.58} Ni _{0.25} Zn _{0.07} Ti _{0.1} O ₂												
R _{wp} : 10.32%, GOF : 1.92												
مت Lattice parameters P3 Space group <i>R</i> 3 <i>m a</i> =2.8953(2) Å, <i>c</i> = 16.7843(11) Å												
Atom	Wyckoff symbol	x/a	y/b	z/c	Occupancy	Uiso×100/ Å ²						
Mn1/Ni1/Zn1/Ti1	3a	0	0	0	0.58/0.25/0.07/0.1	0.28(5)						
Na1	За	0	0	0.1707(5)	0.633(9)	4.7(4)						
01	За	0	0	0.3921(11)	1	0.62(11)						
02	За	0	0	0.6027(11)	1	0.62(11)						

 Table S1. Rietveld refinement results of as-synthesised (a) Na0.7Mn0.75Ni0.25O2, (b) Na0.7Mn0.65Ni0.25Ti0.1O2, (c) Na0.7Mn0.65Ni0.25Zn0.1O2, and (d) Na0.7Mn0.65Ni0.25Zn0.07Ti0.1O2.

Figure S1. Comparison between as synthesised $Na_{0.7}Mn_{0.75}Ni_{0.25}O_2$ (black), $Na_{0.7}Mn_{0.65}Ni_{0.25}Ti_{0.1}O_2$ (red), $Na_{0.7}Mn_{0.65}Ni_{0.25}Zn_{0.1}O_2$ (blue) and $Na_{0.7}Mn_{0.58}Ni_{0.25}Zn_{0.07}Ti_{0.1}O_2$ (green), as a function of (a) unit cell volume and (b) the a and c unit cell parameters. (c) Laboratory PXRD patterns of as synthesised $Na_{0.7}Mn_{0.75}Ni_{0.25}O_2$ (black), $Na_{0.7}Mn_{0.65}Ni_{0.25}Ti_{0.1}O_2$ (red), $Na_{0.7}Mn_{0.65}Ni_{0.25}Ti_{0.1}O_2$ (red), $Na_{0.7}Mn_{0.65}Ni_{0.25}Ti_{0.1}O_2$ (blue), $Na_{0.7}Mn_{0.65}Ni_{0.25}Ti_{0.1}O_2$ (red), $Na_{0.7}Mn_{0.65}Ni_{0.25}Ti_{0.1}O_2$ (blue), $Na_{0.7}Mn_{0.55}Ni_{0.25}Ti_{0.1}O_2$ (blue), $Na_{0.7}Mn_{0.55}Ni_{0.25}Ti_{0.7}O_2$ (blue), $Na_{0.7}Mn_{0.55}Ni_{0.25}Ti_{0.7}O_2$ (blue), $Na_{0.7}Mn_{0.55}Ni_{0.25}Ti_{0.7}O_2$ (blue), $Na_{0.7}Mn_{0.55}Ni_{0.25}Ti_{0.7}O_2$ (blue), $Na_{0.7}Mn_{0.55}Ni_{0.25}Ti_{0.7}O_2$ (blue), $Na_{0.7}Mn_{0.55}Ni_{0.25}Ti_{0.7}O_2$ (blue), $Na_$

Figure S2. Laboratory X-ray Rietveld fit of as-synthesised $Na_{0.7}Mn_{0.65}Ni_{0.25}Zn_{0.1}O_2$, in space group $P2_1/c$. Observed data points are shown in red, with fitted profile in black. Tick marks indicate allowed reflections for the P3 phase.

Table S2. Rietveld refinement results for as-synthesised P3 $Na_{0.7}Mn_{0.65}Ni_{0.25}Zn_{0.1}O_2$ using a superlattice model (space group $P2_1/c$)).

$R_{exp} = 5.40\%, R_{wp} = 7.10\%, R_p = 5.09\%$											
Lattice parameters P3 Space Group $P2_1/c$											
a = 5.8319(7) Å, b = 8.6774(16) Å, c = 5.0099(7) Å, β = 106.492(6), V = 243.10(7) Å ³											
Atom	Wyckoff symbol	x/a	y/b	z/c	Occupancy	Biso					
Ni1/Mn1/Zn1	2c	0	0	0.5	0.44(5)/0.40(5)/0.16	0.37(11)					
Mn2/Ni2/Zn2	4e	-0.0020(9)	0.3330(7)	0.5019(6)	0.73(5)/0.20(5)/0.07	0.37(11)					
Na1	4e	0.4883(17)	0.630(3)	0.289(2)	0.596(13)	1.3(2)					
Na2	4e	0.5	0.0	0.371(3)	0.404	1.3(2)					
01	4e	0.824(3)	0.496(3)	0.596(2)	1	0.49(15)					
02	4e	0.182(3)	0.325(3)	0.878(2)	1	0.49(15)					
03	4e	0.800(2)	0.177(3)	0.600(2)	1	0.49(15)					

Figure S3. SEM micrographs (top) and EDS mapping (bottom) of as synthesised (a) $Na_{0.7}Mn_{0.75}Ni_{0.25}O_2$, (b) $Na_{0.7}Mn_{0.65}Ni_{0.25}Ti_{0.1}O_2$, (c) $Na_{0.7}Mn_{0.65}Ni_{0.25}Zn_{0.1}O_2$ and (d) $Na_{0.7}Mn_{0.58}Ni_{0.25}Zn_{0.07}Ti_{0.1}O_2$.

Figure S4. (a) Galvanostatic cycling performance of half--cells of $Na_{0.7}Mn_{0.65}Ni_{0.25}Ti_{0.1}O_2$ cycled versus Na^+/Na between 2.2--4.3 V (filled spheres) and 4.4--2.2 V (empty sphered) at a rate of 25 mA g⁻⁻¹ at 30 °C, showing the discharge capacities. (b) Galvanostatic charge/discharge curves and (c) corresponding differential capacity versus voltage plots of $Na_{0.7}Mn_{0.65}Ni_{0.25}Ti_{0.1}O_2$ cycled versus Na^+/Na at 30 °C between 2.24.4 V at a rate of 25 -mA g⁻¹⁻.

Figure S5. (a) Galvanostatic charge/discharge curves and (b) corresponding differential capacity versus voltage plots of $Na_{0.7}Mn_{0.75}Ni_{0.25}O_2$ (black), $Na_{0.7}Mn_{0.65}Ni_{0.25}Ti_{0.1}O_2$ (red), $Na_{0.7}Mn_{0.65}Ni_{0.25}Zn_{0.1}O_2$ (blue) and $Na_{0.7}Mn_{0.58}Ni_{0.25}Zn_{0.07}Ti_{0.1}O_2$ (green) half--cells cycled versus Na^+/Na at 30 °C between 2.2--4.3 V at a rate of 250 mA g⁻¹⁻.

Figure S6. Differential capacity versus voltage plots of (a) $Na_{0.7}Mn_{0.75}Ni_{0.25}O_2$, (b) $Na_{0.7}Mn_{0.65}Ni_{0.25}Ti_{0.1}O_2$, (c) $Na_{0.7}Mn_{0.65}Ni_{0.25}Zn_{0.1}O_2$ and (d) $Na_{0.7}Mn_{0.58}Ni_{0.25}Zn_{0.07}Ti_{0.1}O_2$ sodium half--cells cycled between 3.8-4.3 V at a rate of 25 mA g⁻¹ at 30 °C. (e) Galvanostatic cycling performance of sodium half--cells of $Na_{0.7}Mn_{0.75}Ni_{0.25}O_2$ (black), $Na_{0.7}Mn_{0.65}Ni_{0.25}Ti_{0.1}O_2$ (red), $Na_{0.7}Mn_{0.65}Ni_{0.25}Zn_{0.1}O_2$ (blue) and $Na_{0.7}Mn_{0.58}Ni_{0.25}Zn_{0.07}Ti_{0.1}O_2$ (green) cycled between 3.8-4.3 V at a rate of 25 mA g⁻¹ at 30 °C, showing the discharge capacities.

Figure S7. Ex -situ Raman spectra of (a) Na_{0.70}Mn_{0.75}Ni_{0.25}O₂, (b) Na_{0.75}Mn_{0.65}Ni_{0.25}Ti_{0.1}O₂, (c) Na_{0.70}Mn_{0.65}Ni_{0.25}Zn_{0.0}O₂ and (d) Na_{0.75}Mn_{0.58}Ni_{0.25}Zn_{0.07}Ti_{0.1}O₂ electrodes, showing the pristine material (black line), after charge to 3.8 V (red line), charge to 4.3 V (blue line), discharge to 3.8 V (green line) and discharge to 2.2 V (purple line), collected in glass capillaries. (f) Raman spectra of as -synthesised Na_{0.70}Mn_{0.75}Ni_{0.25}O₂ mixed with C65 showing bands at ~1346 and ~1598 cm⁻¹ attributed to the D and G bands. Raman spectra were collected in (lower) and out (upper) of a glass capillary and the orange region highlights contributions at approximately 800 and 1100 cm⁻¹ from the glass capillary.

Figure S8. Comparison of calculated lattice parameters. (a) Lattice constants, (b) lattice angles, and (c) unit cell volumes of Na_{0.7}Mn_{0.65}Ni_{0.25}Ti_{0.1}O₂, Na_{0.7}Mn_{0.65}Ni_{0.25}Zn_{0.1}O₂ and Na_{0.7}Mn_{0.58}Ni_{0.25}Zn_{0.07}Ti_{0.1}O₂ plotted with respect to Na compositions.

Figure S9. Redox active elements of P3-type cathodes. Projected density of states of P3-type $Na_xMn_{0.65}Ni_{0.25}Ti_{0.1}O_2$, $Na_xMn_{0.65}Ni_{0.25}Zn_{0.1}O_2$, and $Na_xMn_{0.58}Ni_{0.25}Zn_{0.07}Ti_{0.1}O_2$ calculated for four different Na composition cases: fully desodiated case (x = 0), charged at upper voltage window limit of 4.3 V, discharged at lower voltage window limit of 2.2 V, and fully sodiated case (x = 1). Redox active electrons accessible within cycling range of 2.2-4.3 V are highlighted by orange area, whereas those only available under full sodiation/desodiation are denoted as grey area. Unlike $Na_xMn_{0.65}Ni_{0.25}Zn_{0.1}O_2$, anionic redox reaction in $Na_xMn_{0.65}Ni_{0.25}Ti_{0.1}O_2$ is difficult even after full desodiation, because of lower energy state of bonding orbitals. For $Na_xMn_{0.65}Ni_{0.25}Zn_{0.07}Ti_{0.1}O_2$, anionic redox can occur upon full desodiation, but it was rarely observed in this study because of the limited voltage window of 2.2-4.3 V (i.e., short Na composition range of 0.28 < x < 0.75).

Figure S10. Origin of the longer c-axis of Zn-substituted samples. (a) Interlayer spacings (d) and (b) TM layer thicknesses (l) of $Na_xMn_{0.65}Ni_{0.25}Zn_{0.1}O_2$, $Na_xMn_{0.65}Ni_{0.25}Ti_{0.1}O_2$ and $Na_xMn_{0.58}Ni_{0.25}Zn_{0.07}Ti_{0.1}O_2$ calculated from the optimized model structures. Mean and standard deviation of values are denoted as dots and vertical lines, respectively. Compared to Ti-substituted $Na_xMn_{0.65}Ni_{0.25}Ti_{0.1}O_2$, Zn-substituted $Na_xMn_{0.65}Ni_{0.25}Zn_{0.1}O_2$ exhibits broader interlayer spacing at low Na composition range of $0.15 \le x \le 0.45$. In contrary, TM thickness is the lowest for the $Na_xMn_{0.65}Ni_{0.25}Zn_{0.1}O_2$, indicating that the longer c-axis of Zn-substituted samples stems from interlayer spacing, not from the size of TM octahedra. Standard deviation values are largest for $Na_xMn_{0.58}Ni_{0.25}Zn_{0.07}Ti_{0.1}O_2$, which may arise from the complexities in the ordering of four different types of transition metal elements.