
Supporting Information: 

 

Ptn-Mn(II)Nx and Ptn-Mn(III)Nx are both winning combinations for the durability of these 

hybrid catalysts in PEM fuel cells: A deep insight into synergism between Pt clusters and 

MnNx/C sites 

 

Vassili P. Glibin - Department of Chemical and Biochemical Engineering, University of 

Western Ontario, London (Ontario), N6A 5B9, Canada; orcid.org/0000-0003-3427-669X; 

Email: vassili.glibin@gmail.com 

Jean-Pol Dodelet - Institut National de la Recherche Scientifique (INRS), Centre Énergie 

Matériaux Télécommunications, Varennes (Québec), J3X1P7, Canada; orcid.org/0000-0002-

4978-0218; Email: jean-pol.dodelet@inrs.ca  

Gaixia Zhang - Department of Electrical Engineering, École de Technologie Supérieure (ÉTS), 

Montréal (Québec) H3C 1K3, Canada; orcid.org/0000-0002-5340-8961; Email: 

gaixia.zhang@etsmtl.ca 

 

S1. Number of atoms in a Pt cluster/nanoparticle, its size and its mean coordination number. 

S1.1. Size of metal clusters/nanoparticles 

 

In ref 1, the nanoparticles were considered as a dense packing of hard spheres with 

structures that derive from known structures of crystalline metals. The outer radius of each of these 

structures, R, was defined as corresponding to the smallest sphere which completely encloses the 

nanoparticle made up of close-packed hard spheres, each with a radius 𝑟0, and which can be taken 

equal to the atomic radius of a metal. The following structures were taken into consideration for 

Pt: cube-octahedron (face-centered cubic lattice), truncated bipyramid (hexagonal close-packed 

lattice), rhombic dodecahedron (body-centered cubic lattice) and icosahedron (a slightly distorted 

face-centered cubic lattice). To estimate the outer radius (R) of these Pt structures, the following 

formulas were derived:1    

R (cube-octahedron) ≈ 1.339𝑟0𝑛1/3        (S1) 

R (truncated hexagonal bipyramid) ≈ 1.317𝑟0𝑛1/3      (S2) 

R (rhombic dodecahedron) ≈ 1.455𝑟0𝑛1/3        (S3) 

R (icosahedron) ≈ 1.339𝑟0𝑛 1/3        (S4) 

Nie et al.2 showed, using DFT (density functional theory) calculations, that structural transitions 

from triangular clusters to icosahedral and face-centered cubic-like clusters occur at around 𝑛 = 

19 and 38, respectively. The calculations using the above formulas are close to the data obtained 

using the high-resolution transmission electron microscopy of the crystalline metal nanoparticles.3 

It should also be noted, that the results of the calculations by the formulas S1-S4 differ somewhat 

(due to the modeling of clusters’ size using the ideal geometric polyhedral) from experimental data 

of Figure 2 in ref 4. To reconcile these values with each other, the values calculated with the 
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formulas S1-S4 should be multiplied by a coefficient of ~1.17. As an example, submitting 𝑛 = 

150 and atomic radius of platinum of 1.39 Å5 into eq S1, one obtains R= 9.9 Å or 1.17×9.9 = 11.6 

Å. It corresponds to a nanoparticle’s size (2R) of 23.2 Å or ~2.3 nm. 

S1.2. Mean coordination numbers of Pt atoms in the clusters/nanoparticles. 

 

Small clusters (from 𝑛 =3 to 𝑛 = 10) 

 

The mean coordination number of atoms in the cluster, 𝐶𝑁̅̅ ̅̅ , is calculated as the quotient of the 

total number of pairwise nearest neighbors divided by the number of atoms, 𝑛, in a cluster.6 

Considering the geometric structure of the Pt clusters in the range of 𝑛 from 4 to 10,2 the mean 

coordination numbers for several small clusters (having the lowest energy structures) were 

calculated. These values are given in Table S1. 

 

Table S1. Geometric mean coordination 

numbers of small Pt clusters 

𝑛 4 5 6 7 8 9 10 

𝐶𝑁̅̅ ̅̅  3 3 3 3.4 3.5 3 4.4 

 

Large clusters (from 𝑛 = 12 to 𝑛 = 46) 

 

The mean coordination numbers of clusters with 𝑛, ranging from 12 to 46, were calculated in ref 

7 using the first principles Stochastic Surface Walking (SSW) global search. The statistical 

treatment of these values in this work gives eq S5: 

 

𝐶𝑁̅̅ ̅̅ = 0.094𝑛 + 3.08           (S5) 

 

Nanoparticles (from 𝑛 = 39 to 205) 

 

By fitting, with a logistic regression, the data presented in Table 2 of ref 6, the following equation, 

describing the dependence of the mean coordination number, 𝐶𝑁̅̅ ̅̅ , on the number atoms 𝑛, is 

obtained: 

 

𝐶𝑁̅̅ ̅̅ = 10.29/[1 + 0.89𝑒(−0.014𝑛)]        (S6) 

 

Note that the logistic regression is applied for phenomena in which there is a continuous increase 

of one factor as another factor increases, until a saturation point is reached.  

 

S2. Evaluation of the cohesive (binding) energy, potential of ionization, and electron affinity 

of 𝐏𝐭𝐧 clusters/nanoparticles using Müller and co-authors’ Analytic Cluster Model. 

 

S2.1 Considerations regarding the Analytic Cluster Model and the determination of several 

properties of isolated Pt clusters/ nanoparticles  

 



Parr and Pearson8-10 have shown that the negative of the electron chemical potential 𝜇  in the 

density functional theory (DFT),10 which is a fundamental property of a considered system (atom, 

molecule, ion, radical) in its ground state, is identical to 𝜒, its electronegativity: 

−𝜇 = (
𝜕𝐸

𝜕𝑁
)𝑣 = 𝜒          (S7) 

where (
𝜕𝐸

𝜕𝑁
)𝑣 is the partial derivative of the energy, 𝐸, of a system (DFT considers atom, molecule, 

ion, radical as a system of nuclei and electrons) with respect to the number of electrons 𝑁 at a 

constant external potential, 𝑣, (nuclear-electron type). It was shown8,9 that the chemical potential 

𝜇 (or the “absolute” electronegativity) for an isolated atom A can be calculated using the first 

ionization potential, 𝐼𝑃𝐴, and the electron affinity, 𝐸𝐴𝐴, of the atom A, as follows: 

−𝜇𝐴(eV) = 𝜒𝐴 = (𝐼𝑃𝐴 + 𝐸𝐴𝐴)/2        (S8) 

In application to clusters/nanoparticles of 𝑛  platinum atoms, 𝑃𝑡𝑛 , we believe that, since the 

chemical potential within the framework of the density functional theory is defined at each point 

and any region of the space, the following equation should be valid to assess the electronegativity 

of a Pt cluster or a Pt nanoparticle: 

−𝜇𝑃𝑡𝑛
(𝑒𝑉) = 𝜒𝑃𝑡𝑛

= (𝐼𝑃𝑃𝑡𝑛
 +  𝐸𝐴𝑃𝑡𝑛

)/2       (S9) 

where 𝐼𝑃𝑃𝑡𝑛
 and 𝐸𝐴𝑃𝑡𝑛

 are the ionization potential and the electron affinity of a Pt 

cluster/nanoparticle.  

To determine these quantities, we resorted to the Analytic Cluster Model of Müller and co-

authors.11 According to these authors, the property, G(n), of 𝑀𝑛 clusters that may either be, its 

ionization potential, its electron affinity, or its cohesive or binding energy may be described using 

the first two terms of the following expansion:  

𝐺(𝑛) = 𝑐0 + 𝑐−1/𝑛1/3         (S10) 

where 𝑛 is the number of atoms in a cluster (a parameter involved in the cluster size); 

𝑐0 = 𝐺(∞); (i.e., 𝑐0 is the bulk value of 𝐺)       (S11) 

𝑐−1 = 𝑐−1(𝑛) = [𝐺(𝑛) − 𝐺(∞)]𝑛1/3; 𝑛 = 1,2,3, …      (S12) 

The application of these formulae requires only knowing: i) the bulk value 𝐺(∞) tabulated for 

many properties in the literature and ii) the value of 𝐺(𝑛) for a cluster containing 𝑛 atoms. Since 

𝐺(𝑛) value should be measured or calculated for some selected value of 𝑛, it means that one needs 

only one measurement to get information on the convergence of 𝐺(𝑛) on the whole region of 𝑛 = 

1, …, ∞.  

S2.2 Determination of the cohesive (binding) energy of Pt cluster/nanoparticle  

In accordance with the Analytic Cluster Model,11 introduced above, we can write: 

𝐵𝐸𝑃𝑡(𝑛) = 𝐵𝐸𝑏𝑢𝑙𝑘
𝑃𝑡 + 21/3(½𝐷𝑒 − 𝐵𝐸𝑏𝑢𝑙𝑘

𝑃𝑡 )/𝑛1/3      (S13) 



where 𝐵𝐸𝑏𝑢𝑙𝑘
𝑃𝑡  is the binding energy per atom of bulk Pt (numerically equal to the enthalpy of 

atomization) and 𝐷𝑒 is the binding energy of the Pt-dimer (Pt2) equals to the bond dissociation 

energy, and 𝑛 is the number of atoms in a cluster. Substituting the values of 𝐵𝐸𝑏𝑢𝑙𝑘
𝑃𝑡  = 5.86 eV12 

(1eV = 96.485 kJ mol-1) and 𝐷𝑒 = 3.178 eV12 into eq S13, leads to the following relationship: 

𝑩𝑬𝑷𝒕(𝒏) = 5.86 – 5.38/𝒏𝟏/𝟑          (S14) 

The values obtained applying eq S14 are in fairly good agreement with DFT data reported in refs 

2 and 13. For example, using eq S14, the 𝐵𝐸𝑃𝑡 = 2.71 eV is obtained for five-atomic Pt-cluster (in 

comparison with the DFT-derived value of 2.784 eV2) and for a nanoparticle of Pt of the size of 

1.4 nm (for which the 𝑛 value corresponds to ~56 atoms; eqs S1 or S4), 𝐵𝐸𝑃𝑡 = 4.45 eV. 

  

S2.3 Determination of the ionization potential (IP) of Pt cluster/nanoparticle 

The equation for the determination of the ionization potentials for Ptn-clusters has the following 

form:11  

𝐼𝑃𝑃𝑡(𝑛) =  𝜙𝑏𝑢𝑙𝑘
𝑃𝑡 + (𝐼𝑃𝑃𝑡 − 𝜙𝑏𝑢𝑙𝑘

𝑃𝑡 )/𝑛1/3       (S15) 

where 𝜙𝑏𝑢𝑙𝑘
𝑃𝑡  is the work function of the platinum metal (6.35 eV14) and 𝐼𝑃𝑃𝑡 is the first ionization 

potential of Pt-atoms (8.9587 eV).12 Thus, the ionization potential of Pt-clusters/nanoparticles is 

approximated by: 

𝑰𝑷𝑷𝒕(𝒏) = 6.35 + 2.61/𝒏𝟏/𝟑          (S16) 

S2.4 Determination of the electron affinity (EA) of Pt cluster/nanoparticle 

The information about the values of electron affinity of Pt-clusters from different sources (mostly 

as results of DFT calculations) are very scattered.13, 15-17 The accessible information was treated 

using the graph of the type: 𝐸𝐴𝑃𝑡 versus 𝑛−1/3. From the graph (which is not given here), the 

following equation, which can predict the electron affinity of Pt-clusters, was obtained: 

𝑬𝑨𝑷𝒕(𝒏) ≈ 𝟓. 𝟐𝟔 − 𝟒. 𝟓𝟎/𝒏𝟏/𝟑        (S17) 

We note that the value of 𝑐0 = 5.26 eV in eq S17 is close to the Fermi level for bulk platinum 

(5.32 eV).14 The Fermi level of a solid-state body is, by definition, the thermodynamic work 

required to add one electron to the body.18 Calculated values of 𝐸𝐴𝑃𝑡(𝑛) for Pt2-Pt5 clusters by 

using eq S17 are in a satisfactory agreement with the experimental data of different authors cited 

in ref 13. 

S2.5 Determination of the energy value of the Pt-Pt bond of Pt cluster/nanoparticle 

The 𝐸𝑃𝑡−𝑃𝑡  value in a cluster/nanoparticle of platinum, can be determined using the relation 

between the enthalpy of atomization of a cluster or nanoparticle and the coordination number of 

Pt atoms. In our case, this role is played by the mean coordination number, 𝐶𝑁̅̅ ̅̅  (see Section S1.2 

of SI). The mean coordination number is defined as the quotient of the total number of pairwise 

nearest neighbors divided by the number of atoms.6 Thus, the equation for 𝐸𝑃𝑡−𝑃𝑡  has the 

following form: 



𝑬𝑷𝒕−𝑷𝒕 = 𝟐∆𝑯𝒂𝒕
𝑷𝒕𝒏/𝑪𝑵̅̅ ̅̅          (S18) 

where ∆𝐻𝑎𝑡
𝑃𝑡𝑛 is the enthalpy of atomization of the Ptn-particle, which is numerically equal to its 

cohesive (binding) energy: 𝐵𝐸𝑃𝑡(𝑛). Note that the derivation of the equation to determine the 

cohesive or the binding energy (𝐵𝐸𝑃𝑡(𝑛) = 5.86 – 5.38/𝑛1/3 ) of Pt clusters/nanoparticles is given 

in Section S2 of SI. The correlation equations between the number of Pt-atoms in clusters and 

nanoparticles and the mean coordination number (𝐶𝑁̅̅ ̅̅ )are given in Section S1.2.  

The calculated values of 𝐼𝑃𝑃𝑡(𝑛) , 𝐸𝐴𝑃𝑡(𝑛) , 𝜒𝑃𝑡𝑛
 and 𝐸𝑃𝑡−𝑃𝑡 for 𝑃𝑡𝑛 several metal 

clusters/nanoparticles are listed in Table 1 of the main text. 

S2.6 Illustrative calculation of the adsorption energy for Pt30 cluster and results of some 

calculations of the adsorption energy using data from Table 1 of the main text. 

i) the formation energy of a Pt30 cluster is: 𝐵𝐸𝑃𝑡30
×30 = -4.13×30 = -123.9 eV. 

ii) the number of Pt-Pt bonds in Pt30 cluster is: the formation energy of a Pt30 

cluster/𝐸𝑃𝑡−𝑃𝑡
𝑃𝑡30  = 123.9/1.40 = 88. 

iii) the reciprocal mean value of 1.64 and 1.40 eV is:  

(2×1.64×1.40)/(1.64+1.40) = 1.51 eV; where 1.64 eV is the mean value of 𝐸𝑃𝑡−𝑃𝑡
𝑃𝑡𝑛  for 

𝑛 comprised between 4 and 19, and 1.40 is 𝐸𝑃𝑡−𝑃𝑡
𝑃𝑡𝑛  for Pt30 . 

iv) the formation energy of the graphene/Pt30 complex is calculated being equal to -[(3 × 

Pt-C bond energy) + (3 × Pt-Pt reciprocal mean energy) plus  the energy of the cluster 

residue (or 88-3 times 𝐸𝑃𝑡−𝑃𝑡
𝑃𝑡30 )] = -(3×2.51 +3×1.51 + 85×1.40) = -131.06 eV. 

v) the adsorption energy of the Pt30 cluster is: the formation energy of the graphene/Pt30 

complex minus the formation energy of the Pt30 cluster is: -131.06 - (-123.9) = -7.16 

eV. 

 

S3. Determination of the electronegativity of non-doped and N-doped carbon substrates 

using their work functions. 

Since the atoms of carbon substrates form a system of 𝜋-conjugated C-C bonds, it means that, in 

the calculations related to the present work, it is possible to operate with the electronegativity of 

graphene or that of any other carbon substrates, rather than with the electronegativity of carbon 

atoms. For example, using the pristine graphite’s work function value (𝜙 = 4.62 eV)19 into eq S19  

𝜒 = 0.50𝜙 − 0.29          (S19) 

which describes the behavior of semi-metals20 (graphite can be considered as a semi-metal), one 

obtains that 𝝌 = 2.02 eV1/2 for the electronegativity of carbon substrates (in Pauling scale of 

electronegativity), comparing with the electronegativity 𝜒 = 2.55 eV1/2 of carbon atoms. When the 

carbon substrate is N-doped, it is important to note that the work function of graphene and graphite 

correlates strongly with their amount of doped nitrogen.21-23 Nitrogen atoms doped at graphitic 

sites lower the work function, while nitrogen atoms located at pyridinic or pyrrolic sites increase 

the work function.21-23 For instance, the N-plasma doped highly oriented pyrolytic graphite (treated 

with a hydrogen plasma during 5 minutes), for which N atoms substitute for graphitic C atoms, 



exhibits a work function value of 𝜙 = 2.9 eV.21 Substituting this value (which is in line with the 

work functions of alkaline earth metals) into eq S20, which is another correlation describing the 

behavior of these metals,20  

𝜒 = 0.23𝜙 + 0.36           (S20) 

gives 𝝌 = 1.03 eV1/2 for the electronegativity of (H-plasma treated) N-doped graphite, a value 

close to the electronegativity of calcium atoms.  

S4. Determination of the bond energy value of Pt-C and Pt-N using the modification of the 

Matcha equation  

Concerning the determination of the Pt-C bond energy, 𝐸𝑃𝑡−𝐶, this value can be evaluated using 

the following equation,24,25 which is a modification of the Matcha’s equation:26 

𝐸𝑃𝑡−𝐶(𝑘𝐽𝑚𝑜𝑙−1) = (𝐸𝑃𝑡−𝑃𝑡𝐸𝐶−𝐶)1/2 + 160[1 − 𝑒−0.29(𝜒𝑃𝑡𝑛−𝜒𝐶𝑚)
2

]   (S21) 

In eq S21, the first and second terms represent the covalent and ionic contributions to Pt-C bond 

energy, respectively; 𝐸𝑃𝑡−𝑃𝑡 and 𝐸𝐶−𝐶 are the energies of ordinary Pt-Pt and C-C bonds, and 𝜒𝑃𝑡𝑛
 

and 𝜒𝐶𝑚
 are the electronegativities (in Pauling’s scale of electronegativity) of the Pt-

cluster/nanoparticle and carbon substrate, respectively. Considering an A-B bond, the Matcha’s 

equation has the following form: 

𝐷𝐴𝐵 (kcal mol-1) = 𝐷𝐴𝐵
𝑐𝑜𝑣 + 𝐾[1 − exp {−30(∆𝜒)2}/𝐾]      (S22) 

where the first and the second terms refer to the covalent and ionic contributions into the energy 

of the A-B bond, respectively, and ∆𝜒 refers to the electronegativity difference 𝜒𝐴 − 𝜒𝐵 . The 

covalent term 𝐷𝐴𝐵
𝑐𝑜𝑣 is equal to the geometric mean (𝐷𝐴𝐴𝐷𝐵𝐵)½ of ordinary A-A and B-B bonds. 

Finally, 𝐾= 103. Matcha notes that predicted bond energies are found to vary from measured ones 

by an average of about 3%.26  

To assess Pt-N bond energy, eq S23 (similar to eq S21) can be applied: 

𝐸𝑃𝑡−𝑁(𝑘𝐽𝑚𝑜𝑙−1) = (𝐸𝑃𝑡−𝑃𝑡𝐸𝑁−𝑁)1/2 + 160[1 − 𝑒−0.29(𝜒𝑃𝑡𝑛−𝜒𝑁/𝐶𝑚)
2

]   (S23) 

where the first and second terms represent the covalent and ionic contributions into the Pt-N bond 

energy, respectively; 𝐸𝑃𝑡−𝑃𝑡 and 𝐸𝑁−𝑁 are the energies of ordinary Pt-Pt and N-N bonds; and 𝜒𝑃𝑡 

and 𝜒𝑁/𝐶𝑚
 are the electronegativities of the Ptn cluster and the N-doped graphene, respectively. 

S5. Sanderson-Boudreaux model of polar covalence for the calculation of partial charges on 

atoms and bonds energy 

 

As can be seen from eq S7, the chemical potential (the “absolute” electronegativity) is 

linked to the energy required for charging an atom in a molecule. As it was shown by Pearson,8,9 

the energy, (
𝜕𝐸

𝜕𝑁
)𝑣 , governs the charge transfer in the process of a molecule formation. 

Consequently, it becomes possible to determine the ionicity of a chemical bond as well as the ionic 

contribution to the bond energy. As far as the corresponding covalent contribution to the bond 



energy is concerned, it is usually determined as an arithmetic or geometric mean of the associated 

homonuclear ordinary bond energy.27 Here, the most successful and consistent approach was 

developed by Sanderson.28 According to Sanderson, the energy of the A-B bond in a given 

molecule can be evaluated by the following sum of an ionic and a covalent contribution: 

𝐸(𝑘𝐽 𝑚𝑜𝑙−1) = 𝑡𝑖
1389

𝑑𝐴−𝐵
+ (1 − 𝑡𝑖)

(𝑟𝐴+𝑟𝐵)

𝑑𝐴−𝐵
(𝐸𝐴−𝐴𝐸𝐵−𝐵)½     (S24) 

where the first and second members in eq S24 refer to the ionic and covalent contributions into the 

A-B bond energy, respectively; 𝑡𝑖  is the ionic weighting coefficient; 𝑑𝐴−𝐵  is the interatomic 

distance; 𝑟𝐴  and 𝑟𝐵  are the covalent radii of atoms A and B; and 𝐸𝐴−𝐴  and 𝐸𝐵−𝐵  are the 

homonuclear single covalent bond energies. The ionic weighting coefficient, 𝑡𝑖, is calculated as 

follows: 

𝑡𝑖 = (𝑞𝐴 − 𝑞𝐵)/2          (S25) 

where 𝑞𝐴 and 𝑞𝐵 are the partial charges on the atoms A and B. The partial charge on the atom A 

is given by 

𝑞𝐴 =
𝜒𝑀−𝜒𝐴

𝑜

1.57√𝜒𝐴
𝑜
           (S26) 

where 𝜒𝑀 is the equalized electronegativity of the molecule. An analogous equation is valid for 

the atom B. For a molecule consisting of 𝑛 atoms, the equalized electronegativity is:  

𝜒𝑀 = (∏ 𝜒𝑖
𝑜𝑛

𝑖 )1/𝑛          (S27) 

where 𝜒𝑖
𝑜, is the electronegativity of the 𝑖𝑡ℎ isolated atom. 

Eq S26 has been modified by Boudreaux29 to eq S28, which considers the total number of atoms, 

𝑛𝑇, bound to a given atom A, since the partial charge on atom A, 𝒒𝑨, varies, accordingly to his 

opinion, in proportion to the numbers of atoms bound to it as follows: 

𝒒𝑨 =
𝟏

𝟑.𝟏𝟐𝒏𝑻√𝝌𝑨
[(𝝌𝑴 − 𝝌𝑨) + ∑(𝝌𝒏𝒊

− 𝝌𝑨)]       (S28) 

where 𝜒𝑛𝑖
 is the electronegativity of each 𝑛𝑡ℎ atom, and 𝜒𝑀 is also calculated, according to eq S27 

as the geometrical mean of the electronegativity of all atoms composing the molecule. The 

fractional ionic character of the atom A bound to 𝑛 atoms is: 

𝒕𝒊(A) = 
∣𝒒𝑨−∑ 𝒏𝒒𝒏∣

𝟏+𝒏
          (S29) 

In the basic Sanderson method, the equalized electronegativity, 𝜒𝑀, (eq S27), does not contain the 

connectivity information and, thus, does not account for different electronegativities for the same 

atom in different environments. For example, the calculation of 𝜒𝑀 does not differentiate between 

the hydrogen atoms in a molecule of acetic acid where these atoms have a different functionality. 

To solve this problem, Gray and Hercules30 modified the original Sanderson method. They 

proposed to use in the calculation of the equalized electronegativity of a molecule, the 𝜒𝑀 values 



of chemical groups, 𝜒𝑔, composing the molecule, instead of the electronegativity of isolated atoms. 

In this case, a molecule is considered as a central atom directly bound to the chemical groups. A 

chemical group is defined as any atom or group of atoms bound to the atom of interest. In turn, the 

equalized electronegativity of a group is calculated (eq S27), using the tabulated electronegativities 

of atoms composing this group. In the case of the CH3COOH molecule, for instance, the charge 

on the carbon atom of the carboxyl group would be calculated (eq S28) using  

𝜒𝑀 = √𝜒𝐶𝜒𝐶𝐻3
𝜒𝑂𝜒𝑂𝐻

4           (S30) 

where 𝜒𝐶 and 𝜒𝑂 are tabulated electronegativities, and 𝜒𝐶𝐻3
 and 𝜒𝑂𝐻 are calculated by eq S27.  

A knowledge of the partial charges depending on the environment first enables the determination 

of the ionic weighting coefficient, 𝑡𝑖, (eq S29). Then, having the information about the interatomic 

distances and covalent radii of the atoms, the calculation of the bond energy of interest in this work 

(Pt-C and Mn-N bonds) becomes possible (eq S24). Therefore, it seems possible (Section 2.3 and 

Section 3) to estimate the binding energy (as a measure of the adhesion strength) of Pt 

clusters/nanoparticles to graphene substrates either in the presence or in absence of integrated 

MnNx/C sites into graphene. Finally, using the obtained values of Mn-N bond energy, we will also 

be able to assess the equilibrium constants of demetallation reactions (manganese acid leaching) 

of the MnNx/C sites in the hybrid Ptn−MnNx/C electrocatalysts, as a criterium of chemical stability 

of the hybrid sites in PEM fuel cells, (Section 4). 

S6. Illustrative calculations of charge distribution on atoms, and Pt-C and Mn-N bond 

energies in the modelled hybrid Pt2-MnIIIN4/C site of Figure 3a of the main text. 

The electronegativity of Pt2 (Figure 3a of the main text), as a chemical group, 𝜒𝑔(𝑃𝑡2), was 

taken, following the Sanderson principle of the full equalization, equal to √𝜒𝑃𝑡 × 𝜒𝑃𝑡, i.e., to the 

same of Pt atom’s electronegativity. It applies equally to the determination of 𝜒𝑔 for a graphene 

lattice. Thus, the value of 𝜒𝑔 of the Pt2 cluster, forming three bonds with carbon atoms of graphene, 

is equal (using the data of Table 5 of the main text) to 

𝜒𝑔(𝑃𝑡2𝐶𝑚 =3) = √2.14 × 2.74634
 = 2.580.  

For the Mn(III)N4 group interacting with eight carbon atoms, it is:  

𝜒𝑔(𝑀𝑛𝑁4𝐶𝑚=8) = √2.20 × 3.1944 × 2.7468 
13

 = 2.828.  

The equalized electronegativity of the site is: 

𝜒𝑀 = √2.580 × 2.828 = 2.701.  

The charge on Pt atom, 𝑞𝑃𝑡, is, eq S28: 

𝑞𝑃𝑡 = 
1

3.12×3×√2.14
[(2.701 − 2.14) + 3 × (2.746 − 2.14)] = +0.174.  

The charge on the carbon atom in the chain Pt-C-N, considering that this atom forms one bond 

each with Pt, N and C (Figure 3a), is: 



𝑞𝐶 (Pt-C-N) = 
1

3.12×3×√2.746
[(2.701 − 2.746) + (2.14 − 2.746) + (3.194 − 2.746)]  = -0.013. 

The charge on the carbon atom, considering that each atom of C forms one bond with Pt and two 

bonds with C atoms (Figure 3a), is: 

𝑞𝐶 = 
1

3.12×3×√2.746
[(2.701 − 2.746) + (2.14 − 2.746)] = -0.042.  

The fractional ionic character of the Pt atom, bound to a single graphene vacancy, eq S29, is: 

𝑡𝑖(Pt) = 
∣0.174−(−0.013)−2(−0.042)∣

1+3
 = 0.068. 

Let’s estimate the Pt-C interatomic distance using the well-known Shoemaker-Stevenson’s 

formula:31  

𝑑𝐴𝐵 = 𝑟𝐴 + 𝑟𝐵 − 0.09 ∣ ∆𝜒𝐴𝐵 ∣  

where 𝑟𝐴  and 𝑟𝐵  are the covalent radii of atoms A and B, ∆𝜒𝐴𝐵  is the difference of the 

electronegativities of A and B atoms (in Pauling scale electronegativity). We obtain: 

𝑑𝑃𝑡𝐶 = 1.37 + 0.772 – 0.09∣1.69-2.55∣ = 2.07 Ǻ ≅ 2.1 Ǻ. 

Using eq S24, we obtain: 

𝐸𝑃𝑡−𝐶 = 0.068
1389

2.1
+ (1 − 0.068)

(1.37+0.772)

2.1
(158.2 × 357.3)½ = 270.8 kJ mol-1 = 2.81 eV. 

Comparing the obtained value with the Pt-C bond energy of 2.51 eV (Section 2.2), it can be seen 

that the MnIIIN4 grouping, integrated into a graphene lattice, noticeably (at 0.29 eV) strengthens 

this bond. The adsorption (binding) energy of Pt2 cluster is (Sections 2.1 and 2.2): -(3×2.81+ 

1×1.64 – 3.18) = -6.89 eV, that is more than the value of -5.99 eV (Table 2).  

The charge on the Mn atom of the  (𝑀𝑛𝑁4𝐶𝑚=8) grouping is: 

𝑞𝑀𝑛 = 
1

3.12×4×√2.20
[(2.701 − 2.20) + 4 × (3.194 − 2.20)] = +0.242. 

The charge on N atoms (coordinated to Mn), considering that each atom of N forms one bond with 

Mn and two bonds with C atoms (Figure 3a), is: 

𝑞𝑁 = 
1

3.12×3×√3.194
[(2.701 − 3.194) + 2 × (2.746 − 3.194) + (2.20 − 3.194)] = -0142. 

The fractional ionic character of Mn atom, eq S29, is: 

𝑡𝑖(Mn) = 
∣0.242−4(−0.142)∣

1+4
 = 0.162. 

The value of Mn-N bond energy (eq S24) is: 

𝐸𝑀𝑛−𝑁 = 0.162
1389

2.0
+ (1 − 0.162)

(1.28+0.734)

2.0
[(121.0 ± 29) × 156.3)]½ = 227.7±14 kJ mol-1. 

The obtained value, comparing with the values in the range from 215.8 to 219.7 kJ mol-1 for MnN4 

grouping integrated into graphene,32 is reasonable, considering that the hybridization of two sites 



mutually enhances the strength of Pt-C and Mn-N bonds. The value of 2.0 Ǻ was taken from ref 

32. 

Note that in this work, calculations of the energetics of adsorption and chemical bonds were 

performed based on the modern concept of electronegativity. Pearson,8.9 and Parr and Yang,10 gave 

a precise definition of the electronegativity (eq S7), which was known and successfully used for 

many years in various branches of chemistry for the calculations of partial charges on atoms and 

bonds energy in molecules and solids, using the electronegativity equalization principle formulated 

by Sanderson.28 This principle states that “when two or more atoms initially different in 

electronegativity chemically combine, their electronegativities equalize in the molecule”. The 

validity of Sanderson’s principle is due to the fact that the electronic chemical potential 𝜇 (or the 

“absolute” electronegativity) is the property of an equilibrium state.10 Sanderson in his 

monograph28 notes that the validity of partial charges determined using this principle have been 

proven in the accurate calculations of energies of about 15000 bonds between more than 200 

different pairs. 
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Figure S1: Comparison of the Pt 4f core level XPS of Pt nanoparticles on undoped (HOPG), and 

N-doped HOPG substrates.  

Black line: original curve; Red line: fitting curve; Blue line: deconvolution curve. 

Reproduced from ref 33. 

 

 

 



 

Figure S2: XPS Pt 4f spectra of Pt/RGO and Pt/RGO with different cycles of ZIF-67. 

Reproduced from ref 34. 
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Figure S3: Pt 4f XPS of the Pt catalysts supported on ZIF-NC and KJ (Ketjen Black), in which 

Pt@Ketjen Black and Pt@ZIF-NC served as the baseline. Reproduced from ref 35. 

 

 

 

 

Figure S4: XPS spectra of Pt 4f for Pt@Fe
SA

-N-C and Pt
A
@Fe

SA
-N-C. Reproduced from ref 36. 
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