Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

for

Tuning of the Ionic Conductivity of Ba7Nb4MoO20 by Pressure: A Neutron Diffraction and

Atomistic Modelling Study

V. Watson¹, Y. Zhou², D. N. Tawse¹, O. J. Ballantyne², C. J. Ridley³, J. A. Dawson² and A. C. Mclaughlin¹

¹Chemistry Department, University of Aberdeen, Meston Walk, Aberdeen, AB24 3UE, UK

²Chemistry – School of Natural and Environmental Sciences, Newcastle University, Newcastle, NE1 7RU, UK

³ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK

Table S1 Refined atomic parameters, cell parameters and agreement factors for $Ba_7Nb_4MoO_{20}$ from the Rietveld fit to the P^3m1 model from neutron diffraction data collected on the PEARL diffractometer from 0 GPa to 4.9 GPa. Due to their similar scattering lengths, the Mo and Nb cations are distributed on the metal M positions. M= Mo, Nb.

		Pressure	0 Gpa	0.93(5) GPa	1.65(5) Gpa	3.29(6) Gpa	3.56(6) Gpa	4.06(8) GPa	4.90(8) GPa
Atom	Site	Parameter							
Ba1 (0,0,0)	1 <i>a</i>	Occupancy	1	1	1	1	1	1	1
		Uiso	0.0074(4)	0.0080(8)	0.0103(8)	0.0069(8)	0.0071(8)	0.0051(9)	0.0040(10)
Ba2 (1/3,2/3, z)	2 <i>d</i>	Occupancy	1	1	1	1	1	1	1
		Uiso	0.0074(4)	0.0080(8)	0.0103(8)	0.0069(8)	0.0071(8)	0.0051(9)	0.0040(10)
		z	0.8278(3)	0.8263(5)	0.8265(5)	0.8271(5)	0.8271(5)	0.8248(6)	0.8234 (7)
Ba3 (0,0, z)	2 <i>c</i>	Occupancy	1	1	1	1	1	1	1
		Uiso	0.0074(4)	0.0080(8)	0.0103(8)	0.0069(8)	0.0071(8)	0.0051(9)	0.0040(10)
		z	0.2777(3)	0.2784(6)	0.2782(6)	0.2767(8)	0.2771(7)	0.2806(7)	0.2796(9)
Ba4 (1/3, 2/3, z)	2 <i>d</i>	Occupancy	1	1	1	1	1	1	1
		Uiso	0.0074(4)	0.0080(8)	0.0103(8)	0.0069(8)	0.0071(8)	0.0051(9)	0.0040(10)
		z	0.5751(4)	0.5740(7)	0.5750(8)	0.5753(8)	0.5765(8)	0.5775(8)	0.5795(9)
M1 (1/3, 2/3, z)	2 <i>d</i>	Occupancy	0.877(2)	0.869(4)	0.857(4)	0.869(5)	0.857(5)	0.861(6)	0.851(7)
		Uiso	0.0096(3)	0.0132(7)	0.0103(6)	0.0075(7)	0.0069(7)	0.0112(8)	0.0074(9)
		z	0.0918(3)	0.0918(5)	0.0904(5)	0.0905(6)	0.0912(6)	0.0910(6)	0.0910(8)
M2 (1/3, 2/3, z)	2 <i>d</i>	Occupancy	0.123(2)	0.131(4)	0.143(4)	0.131(5)	0.143(5)	0.139(6)	0.149(7)
		Uiso	0.0096(3)	0.0132(7)	0.0103(6)	0.0075(7)	0.0069(7)	0.0112(8)	0.0074(9)
		z	0.2230(18)	0.1935(24)	0.2323(22)	0.2307(28)	0.2297(25)	0.2398(34)	0.2347(31)
M3 (1/3, 2/3, z)	2 <i>d</i>	Occupancy	1	1	1	1	1	1	1
		Uiso	0.0096(3)	0.0132(7)	0.0103(6)	0.0075(7)	0.0069(7)	0.0112(8)	0.0074(9)

		Z	0.3536(2)	0.3529(4)	0.3520(4)	0.3531(4)	0.3534(4)	0.3510(5)	0.3517(6)
M4 (0,0, 1/2)	1 <i>b</i>	Occupancy	1	1	1	1	1	1	1
		Uiso	0.0096(3)	0.0132(7)	0.0103(6)	0.0075(7)	0.0069(7)	0.0112(8)	0.0074(9)
O1 (x,y,z)	6 <i>i</i>	Occupancy	0.243(3)	0.234(5)	0.233(5)	0.230(5)	0.220(5)	0.208(6)	0.180(7)
		Uiso	0.0112(29)	0.0052(42)	0.0015(35)	0.0022(53)	0.0001(43)	0.0010(53)	0.0017(89)
		x	0.3619(10)	0.3652(15)	0.3657 (13)	0.3653 (16)	0.3663 (15)	0.3613(20)	0.3518(47)
		У	0.6381(10)	0.6348(15)	0.6343(13)	0.6347(16)	0.6337(15)	0.6387(20)	0.64822(47)
		z	0.9832(4)	0.9819(7)	0.9830(7)	0.98010(7)	0.9813(7)	0.9824(8)	0.9825(10)
O2 (1/2,0,0)	3e	Occupancy	0.179(5)	0.198(9)	0.200(9)	0.206(10)	0.225(10)	0.249(12)	0.306(14)
		Uiso	0.0179(39)	0.0130(85)	0.0170(89)	0.0015(75)	0.00003(578)	0.0092(83)	0.0351(114)
O3 (x,y,z)	6 <i>i</i>	Occupancy	1	1	1	1	1	1	1
		Uiso	0.0167(7)	0.0230(15)	0.0188(13)	0.0127(13)	0.0127(14)	0.0212(18)	0.0112(17)
		x	0.1679(5)	0.1671(9)	0.1662(10)	0.1663(10)	0.1666(11)	0.1684(14)	0.1647(13)
		У	0.8321(5)	0.8329(9)	0.8338(10)	0.8337(10)	0.833386(11)	0.8316 (14)	0.8353(13)
		z	0.1321 (2)	0.1328(4)	0.1331 (4)	0.1333 (4)	0.1331(4)	0.1330(5)	0.1341(5)
O(4) (x,y,z)	6 <i>i</i>	Occupancy	1	1	1	1	1	1	1
		Uiso	0.0092(6)	0.0153(13)	0.0164(13)	0.0095(13)	0.0120(13)	0.0274(17)	0.0242(21)
		x	0.4936(4)	0.4930(8)	0.4944(8)	0.4943(8)	0.4964(8)	0.4972(11)	0.4960(11)
		У	0.9873(8)	0.9861(15)	0.9890(15)	0.9887(16)	0.9929(17)	0.9945(22)	0.9921(23)
		z	0.2941(1)	0.2932(2)	0.2929(2)	0.2921(2)	0.2923(2)	0.2926(3)	0.2923 (4)
O5 (x,y,z)	6 <i>i</i>	Occupancy	1	1	1	1	1	1	1
		Uiso	0.0049(4)	0.0067(9)	0.0062(10)	0.0033(10)	0.0049(11)	0.0010(9)	0.0027(13)
		x	0.1627(5)	0.1615(8)	0.1609(8)	0.1616(9)	0.1612(9)	0.1606(8)	0.1592(10)
		У	0.8373(5)	0.8385 (8)	0.8391(8)	0.8384 (9)	0.8388(9)	0.8394 (8)	0.8408(10)
		Z	0.4316(2)	0.4329(3)	0.4322(4)	0.4319(4)	0.4314(4)	0.4319(4)	0.4328(5)
	a (Å)		5.86122(6)	5.84293(9)	5.82887(9)	5.79894(10)	5.79397(10)	5.78531(13)	5.77144(19)
	<i>c</i> (Å)		16.5252(3)	16.4680(5)	16.4226(5)	16.3282(6)	16.3136(6)	16.2862(9)	16.2420(12)
	V (ų)		491.550(9)	486.892(15)	483.216(14)	475.516(16)	474.279(17)	472.068(23)	468.530(34)
χ2			5.336	0.7127	0.725	0.735	0.7854	0.8116	0.7904
R _p (%)			0.0196	0.0189	0.0188	0.0205	0.0214	0.0259	0.031
R _{wp} (%)			0.0228	0.0189	0.0187	0.0201	0.021	0.0245	0.0282

Table S2 Selected bond lengths for $Ba_7Nb_4MoO_{20}$ determined from the Rietveld fit to the P^3m1 model from neutron diffraction data. Due to their similar scattering lengths, the Mo and Nb

Bond distance							
(Å)	0 Gpa	0.93(5) GPa	1.65(5) Gpa	3.29(6) Gpa	3.56(6) Gpa	4.06(8) GPa	4.90(8) GPa
Ba1-O1	3.261(4)	3.241(7)	3.229(6)	3.215(7)	3.207(6)	3.222(8)	3.215(7)
Ba1-O2	2.93061(3)	2.92147(4)	2.91443(4)	2.89947(5)	2.89699(5)	2.89265(7)	2.89947(5)
Ba1-O3	2.770(4)	2.766(7)	2.755(7)	2.744(7)	2.741(8)	2.746(10)	2.744(7)
Ba2-O1	2.585(7)	2.584(13)	2.585(13)	2.533(14)	2.538(13)	2.582(15)	2.533(14)
Ba2-O2	3.311(4)	3.320(7)	3.306(7)	3.281(8)	3.280(7)	3.307(8)	3.281(8)
Ba2-O3	3.0046(11)	2.947(14)	2.9883(23)	2.9705(22)	2.9688(22)	2.9736(27)	2.9705(22)
Ba2-O4	2.672(4)	2.639(8)	2.623(8)	2.605(8)	2.590(8)	2.556(10)	2.605(8)
Ba3-O3	2.949(7)	2.947(14)	2.925(13)	2.876(15)	2.882(14)	2.937(16)	2.876(18)
Ba3–O4	2.9441(6)	2.9319(11)	3.001(11)	2.9112(12)	2.9075(11)	2.8996(10)	2.8933(14)
Ba3-O5	3.032(6)	3.025(11)	3.007(12)	3.009(13)	2.993(12)	2.942(13)	2.954(17)
Ba4-O4	2.785(6)	2.797(11)	2.776(11)	2.772(12)	2.739(11)	2.712(13)	2.697(14)
Ba4-05	2.936(6)	2.907(12)	2.919(12)	2.909(13)	2.930(13)	2.937(14)	2.954(17)
	2.9327(3)	2.9244(5)	2.9176(6)	2.9023(6)	2.9004(6)	2.8974(7)	2.8937(11)
M1-01	1.818(8)	1.836(14)	1.802(13)	1.816(15)	1.824(15)	1.791(16)	1.786(21)
M1-02	2.2723(31)	2.266(6)	2.249(6)	2.233(6)	2.239(6)	2.232(6)	2.237(9)
M1-03	1.807(6)	1.808(11)	1.823(11)	1.818(11)	1.808(11)	1.790(14)	1.827(13)
M2-03	2.253(20)	1.986(29)	2.282(34)	2.312(32)	2.297(27)	2.400(40)	2.290(40)
M2-04	2.008(17)	2.270(4)	1.957(28)	1.902(25)	1.931(22)	1.854(25)	1.917(33)
M3-04	1.902(4)	1.893(8)	1.896(8)	1.900(8)	1.916(8)	1.898(11)	1.892(11)
M3-05	2.158(5)	2.182(9)	2.179(8)	2.152(9)	2.146(9)	2.175(9)	2.170(11)
M4-05	2.002(4)	1.972(7)	1.971(7)	1.967(8)	1.967(8)	1.955(7)	1.932(9)

cations are distributed on the metal M positions. M= Mo, Nb.

Table S3 Selected bond angles for $Ba_7Nb_4MoO_{20}$ determined from the Rietveld fit to the P^3m1 model from neutron diffraction data. Due to their similar scattering lengths, the Mo and Nb cations are distributed on the metal M positions. **M= Mo, Nb.**

Bond Angle (°)	0 GPa	0.93(5) GPa	1.65(5) Gpa	3.29(6) Gpa	3.56(6) Gpa	4.06(8) GPa	4.90(8) GPa
01-M1-03	106.9(2)	106.7(4)	106.9(4)	107.3(4)	106.7(4)	107.8(5)	108.7(9)
O2-M1-O2	80.30(13)	80.26(25)	80.78(25)	80.99(27)	80.64(26)	80.76(28)	80.30(40)
02-M1-03	84.28(9)	84.44(18)	84.60(18)	84.77(18)	84.60(19)	84.74(24)	84.44(24)
	159.8(2)	159.9(5)	160.7(5)	161.2(5)	160.6(5)	160.9(5)	160.0(7)
03-M1-03	107.2(2)	107.0(4)	106.5(4)	106.1(4)	106.6(4)	106.3(4)	107.0(5)
O3-M2-O3	80.4(9)	94.1(18)	79.6(15)	77.9(13)	78.3(12)		79.8(17)
03-M2-O4	95.06(14)	94.1(4)	93.88(31)	93.1(4)	93.11(30)		92.9(4)
	174.0(13)	168.0(22)	171.4(22)	168.3(21)	168.8(18)		170.3(27)

Figure S1 Variation of the normalised unit cell parameter *a* with pressure for $Ba_7Nb_4MoO_{20}$. Axial compressibility of k = 3.14 x 10⁻³ GPa⁻¹ was determined from the linear fit of this graph.

Figure S2 Variation of the normalised unit cell parameter *c* with pressure for $Ba_7Nb_4MoO_{20}$. Axial compressibility of k = 3.51×10^{-3} GPa⁻¹ was determined from the linear fit of this graph.

Figure S4 Variation of the M2 fractional occupancy with pressure for Ba₇Nb₄MoO_{20.}

Table S4 Minimum bounding ellipsoid data calculated by the PIEFACE software package for M1O₄ tetrahedra. R1, R2 and R3 are the principal ellipsoid radii, <R> is the mean radius, σ (R) is a measure of the polyhedral distortion, S is the ellipsoidal shape parameter and *d* is the centre cation displacement.

Pressure	<i>R1</i> (Å)	<i>R2</i> (Å)	<i>R3</i> (Å)	<r> (Å)</r>	σ <i>(R)</i> (Å)	S	d
0	1.85845	1.78442	1.78442	1.80910	0.03490	0.03983	0.03881
0.93(5)	1.87929	1.78781	1.78781	1.81830	0.04313	0.04868	0.03881
1.65(5)	1.86427	1.79326	1.79326	1.81693	0.03348	0.03809	0.06955
3.29(6)	1.88084	1.78310	1.78310	1.81568	0.04608	0.05197	0.06212
3.56(6)	1.87450	1.77799	1.77799	1.81016	0.04550	0.05149	0.04841
4.06(8)	1.85168	1.75636	1.75636	1.78813	0.04493	0.05147	0.05976
4.90(8)	1.85202	1.78878	1.78878	1.80986	0.02981	0.03415	0.07972

Table S5 Minimum bounding ellipsoid data calculated by the PIEFACE software package for M1O₆ octahedra. R1, R2 and R3 are the principal ellipsoid radii, <R> is the mean radius, σ (R) is a measure of the polyhedral distortion, S is the ellipsoidal shape parameter and *d* is the centre cation displacement.

Pressure	<i>R1</i> (Å)	<i>R2</i> (Å)	<i>R3</i> (Å)	<r> (Å)</r>	σ <i>(R)</i> (Å)	S	d
0	2.06469	2.06469	1.89089	2.00675	0.08193	-0.08417	0.43319
0.93(5)	2.06292	2.06292	1.89423	2.00669	0.07952	-0.08177	0.42100
1.65(5)	2.06353	2.06353	1.89356	2.00687	0.08012	-0.08237	0.38882
3.29(6)	2.05243	2.05243	1.88522	1.99670	0.07882	-0.08147	0.38661
3.56(7)	2.04846	2.04846	1.88100	1.99264	0.07894	-0.08175	0.40166
4.06(9)	2.03522	2.03522	1.87605	1.98216	0.07503	-0.07820	0.40919
4.90(9)	2.05249	2.052491	1.88643	1.99714	0.07828	-0.08091	0.37632

Table S6 Minimum bounding ellipsoid data calculated by the PIEFACE software package for M2O₆ octahedra. R1, R2 and R3 are the principal ellipsoid radii, <R> is the mean radius, σ (R) is a measure of the polyhedral distortion, S is the ellipsoidal shape parameter and *d* is the centre cation displacement.

Pressure	<i>R1</i> (Å)	<i>R2</i> (Å)	<i>R3</i> (Å)	<r> (Å)</r>	σ <i>(R)</i> (Å)	S	d
0	2.31728	2.026417	2.026416	2.123371	0.137114	0.125518	0.204895
0.93(5)	2.285496	2.021889	2.021887	2.109757	0.124266	0.115338	0.268666
1.65(5)	2.270681	2.031085	2.031084	2.11095	0.112947	0.105516	0.363238
3.29(6)	2.243334	2.019446	2.019444	2.094075	0.105542	0.099801	0.341188
3.56(6)	2.248237	2.027345	2.029788	2.094578	0.10413	0.087389	0.304334
4.06(8)	2.250569	2.018324	2.018322	2.095738	0.109482	0.103193	0.448155
4.90(8)	2.224157	2.029789	2.029788	2.094578	0.091626	0.087389	0.393607

Figure S5 Variation of the polyhedral distortion, $\sigma(R)$, for the M1O₆ octahedra (left). Variation of ellipsoid shape parameter, S, for the M1O₆ octahedra for Ba₇Nb₄MoO₂₀ (right).

Figure S6 Variation of the polyhedral distortion, $\sigma(R)$, for the M2O₆ octahedra.

Figure S7 O–O radial distribution functions from molecular dynamics simulations as a function of pressure.