## **Supporting Information**

## A Multifunctional Mo-N/Fe-N Interfaced MoS<sub>2</sub>/FeNC Electrocatalyst for Energy Conversion Application

Khatun A Jannath,<sup>†a</sup> Kyubin Shim,<sup>†b</sup> Kyeong-Deok Seo,<sup>†a</sup> Heru Agung Saputra,<sup>a</sup> Sang Mun Lee,<sup>b</sup> Hae Jin Kim,<sup>\*b</sup> and Deog-Su Park<sup>\*a</sup>

<sup>a</sup> Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea

<sup>b</sup>Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea

[\*] Corresponding authors: Dr. Hae Jin Kim Prof. Deog-Su Park

E-mail: hansol@kbsi.re.kr, dsupark@pusan.ac.kr

Tel.: +82-42-865-3953, +82-51-510-2244; Fax: +82-51-514-2122

<sup>[1]</sup> These authors contributed equally to this work.



Table S1: Simulated structures and the energy values for pDAN and Fe-pDAN.



Figure S1: SEM image of FeNC.



Figure S2: High-resolution XPS images of a) C 1s, b) N 1s, c) Fe 2p, d) Mo 3d, and e) S 2p for MoS<sub>2</sub>@FeNC.



Figure S3: SEM images of a, b) MoS<sub>2</sub>/FeNC pyrolyzed at 700 and 900 °C, respectively. SEM image of c) MoS<sub>2</sub>-800.



Figure S4: a) Dark-field TEM image of  $MoS_2/FeNC-800$  and the corresponding elemental mapping images of Mo, S, Fe, C, and N.



Figure S5: High-resolution XPS spectrum of a) C 1s, b) N 1s, and c) Fe 2p for FeNC-800.



Figure S6: N<sub>2</sub>-adsorption/desorption isotherms (a)  $MoS_2/FeNC-800$  and (b) FeNC-800. Pore size distributions obtained by the BJH method for (b)  $MoS_2/FeNC-800$  and (e) FeNC-800. Pore size distributions obtained by the HK method for (c)  $MoS_2/FeNC-800$  and (f) FeNC-800

| Samples                | S <sub>BET</sub><br>(m²/g) | S <sub>ext</sub><br>(m <sup>2</sup> /g) | V <sub>mic</sub><br>(cm <sup>3</sup> /g) | V <sub>tot</sub><br>(cm <sup>3</sup> /g) | D <sub>avg</sub><br>(nm) | Avg. w <sub>HK</sub><br>(nm) |
|------------------------|----------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|--------------------------|------------------------------|
| FeNC                   | 164.6                      | 80.9                                    | 0.04                                     | 0.39                                     | 9.50                     | 0.69                         |
| MoS <sub>2</sub> /FeNC | 180.2                      | 104.5                                   | 0.03                                     | 0.32                                     | 7.17                     | 0.80                         |

Table S2. The pore structure of the sample, as determined using BET method and t-plot.

S<sub>BET</sub>: Specific surface area by BET plot

Sext : External surface area by t-plot

V<sub>mic</sub>: Micropore volume by t-plot (<2nm)

V<sub>tot</sub>: Total pore volume

D<sub>avg</sub>:. Average pore diameter(4V/A: by BET)

Avg. *w<sub>HK</sub>*: Average pore diameter by H-K method(<2nm)

## \* Notes on BET analysis.

The typical sample weight was 50–100 mg. Before measurement, the sample was degassed under a vacuum of  $1.33 \times 10^{-6}$  kPa at 363 K for 1 hour, then it was heated at a rate of 5 K/min to 393 K overnight. The adsorption-desorption measurements were carried out at a liquid nitrogen temperature (77 K). The specific surface area (S<sub>BET</sub>), the micropore volume (V<sub>mic</sub>), and the external surface area were determined by means of a t-plot. The total pore volume (V<sub>tot</sub>) was calculated at a relative pressure of P/P<sub>0</sub> = 0.9889. The pore sizes of the sample were analyzed using the Horvath-Kawazoe (H-K) method for microporosity and the Barrett-Joyner-Halenda (BJH) method for mesoporosity.



Figure S7: a) RDE polarization curves of FeNC-800 at different rotation rates, b) corresponding KL plot. c) RDE polarization curves of MoS<sub>2</sub>-800 at different rotation rates, d) corresponding KL plot.



Figure S8: a) LSVs of MoS<sub>2</sub>/FeNC prepared at different pyrolysis temperatures for ORR in 0.1 M KOH. b) Stability of MoS<sub>2</sub>/FeNC-800 after 5000 cycles.

Table S3: Comparison of HER catalytic activities between  $MoS_2@FeNC$  and other well-developed HER electrocatalysts and non-noble metal catalysts in 1 M KOH.

| Catalysts                                                       | Overpotential<br>(η) at 10<br>mAcm <sup>-2</sup> | Tafel<br>slope                | Electrolyte | References                                               |
|-----------------------------------------------------------------|--------------------------------------------------|-------------------------------|-------------|----------------------------------------------------------|
| MoS <sub>2</sub> /FeNC-800                                      | 128 mV                                           | 61 mV<br>dec <sup>-1</sup>    | 1 М КОН     | This work                                                |
| Ni-1T MoS <sub>2</sub>                                          | 199 mV                                           | 52.7 mV<br>dec <sup>-1</sup>  | 1 M KOH     | Small, 2022, 18, 2107238                                 |
| NiS@MoS <sub>2</sub>                                            | 146 mV                                           | 62.44 mV<br>dec <sup>-1</sup> | 1 M KOH     | Journal of Alloys<br>and Compounds,<br>2021, 853, 157352 |
| MoS <sub>2</sub> @CoSe <sub>2</sub> -CC                         | 101 mV                                           | 67 mV<br>dec <sup>-1</sup>    | 1 M KOH     | Nanoscale, 2022,<br>14, 2490-2501                        |
| V doped MoS <sub>2</sub>                                        | 206 mV                                           | 59 mV<br>dec <sup>-1</sup>    | 1 М КОН     | Applied Catalysis<br>B, 2019, 254, 432-<br>442           |
| CoS <sub>2</sub> -MoS <sub>2</sub>                              | 130 mV                                           | 66.8 mV<br>dec <sup>-1</sup>  | 1 М КОН     | Applied Surface<br>Science, 2020, 527,<br>146847         |
| NiS/MoS <sub>2</sub>                                            | 174 mV                                           | 70.2 mV<br>dec <sup>-1</sup>  | 1 M KOH     | J. Mater. Chem. A,<br>2019, 7, 21514-<br>21522           |
| Fe, C-<br>MoS <sub>2</sub> /Ni <sub>3</sub> S <sub>2</sub> -450 | 188 mV                                           | 95 mV<br>dec <sup>-1</sup>    | 1 М КОН     | Crystals, 2021, 11, 340                                  |
| Co <sub>3</sub> O <sub>4</sub> @MoS <sub>2</sub> /CC            | 207 mV                                           | 59.5 mV<br>dec <sup>-1</sup>  | 1 M KOH     | J. Mater. Chem. A, 2018, 6, 2067-2072                    |



Figure S9: CV curves MoS<sub>2</sub>/FeNC-800, FeNC-800, and MoS<sub>2</sub> -800 at different scan rates.



Figure S10: Comparison of LSVs of  $MoS_2$ /FeNC-800 using graphite rod (red line) and platinum wire (black line) as the counter electrode.



Figure S11: High-resolution XPS spectra of a) Mo 3d, b) N 1s, c) Fe 2p, d) S 2p, and e) C 1s for MoS<sub>2</sub>/FeNC-800 after long-term chronoamperometric study.



Figure S12: Optimization of a) potential, b) pH for H<sub>2</sub>O<sub>2</sub> sensor measurements in PBS (pH 7.4).