Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Flux Synthesis of Single Crystal Bismuth Vanadate (BiVO₄) Nanowires and their Visible Light

Driven Photocatalytic Water Oxidation Properties

Chengcan Xiao, ^a Samutr Assavachin, ^a William Hahn, ^b Li Wang, ^a Klaus van Benthem, ^b Frank E.

Osterloh^{a,*}

^a Department of Chemistry, University of California, Davis, California 95616, United States;

https://orcid.org/0000-0002-9288-3407; Email: fosterloh@ucdavis.edu

^b Department of Materials Science and Engineering, University of California, Davis, California 95616,

United States

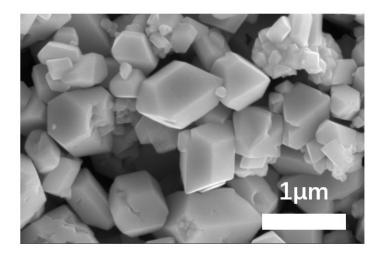
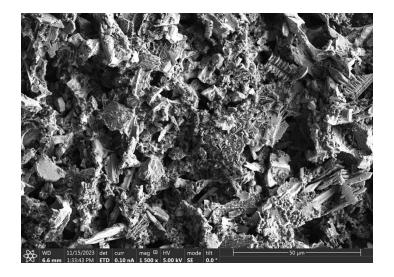
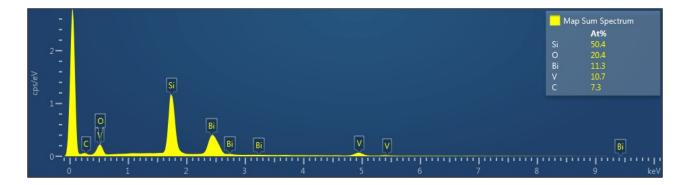
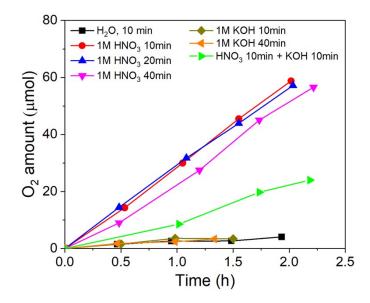
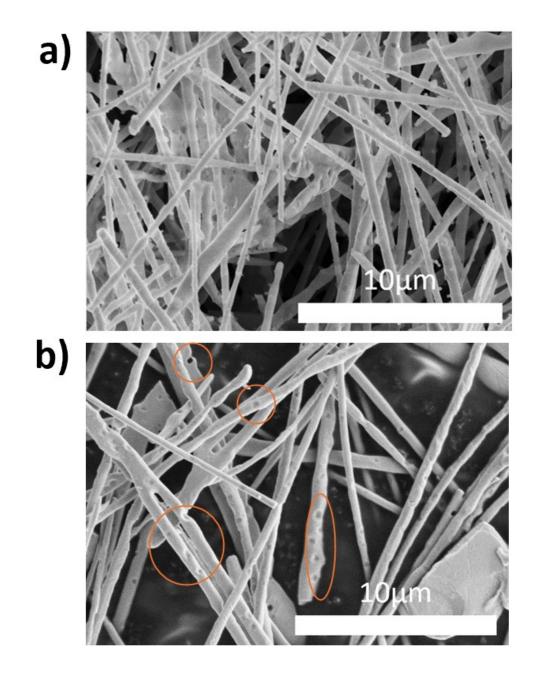
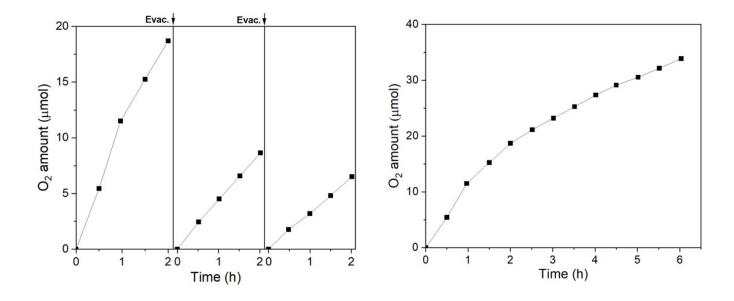



Figure S1. SEM image of the $BiVO_4$ ($BiVO_4$) microparticles used as the precursor for flux synthesis of $BiVO_4$ NWs.

Figure S2. SEM of the $BiVO_4$ product from a flux synthesis using 1:20 $BiVO_4$ -to-NaVO₃ ratio. The other conditions of the flux synthesis were the same as Figure 1 shows.


Figure S3. EDX spectrum of the respective $BiVO_4$ NW sample. The Si and C signals were respectively from the Si substrate and residue of ethanol solvent used during sample preparation for drop-coating a suspension of $BiVO_4$ NWs.

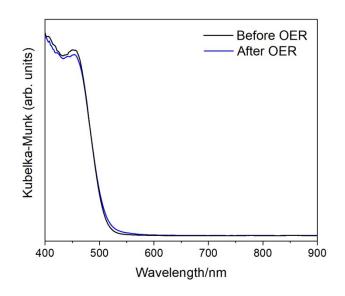

Figure S4. Visible-light-driven O_2 evolution of 100 mg BiVO₄ NWs in 100 mL 0.02 M Fe(NO₃)₃ solution. The BiVO₄ NWs samples used here are either after 10 min, 20 min, 40 min of 1 M HNO₃ wash (red, blue, purple curve, respectively), 10 min, 40 min of 1 M KOH wash (dark yellow, orange curves, respectively), 10 min of 1 M HNO₃ wash followed by 10 min of 1 M KOH wash (green curve), or 10 min H₂O wash (black curve). The gas evolution reaction was done under the illumination of a 100 W Xe lamp with a 0.22 M NaNO₂ chemical long-pass filter to cut off the UV light, and the visible light intensity was 390 mW/cm² measured by a GaAsP detector (International Light NIST traceable photometer).

Figure S5. SEM images of $BiVO_4$ NWs (a) before and (b) after 5 min soaking in 1.0 M HNO₃. Surface pits were observed as marked in orange circles.

Figure S6. (Left) 6-hour continuous O_2 evolution test of BiVO₄ NWs in 100 mL of 0.02 M Fe(NO₃)₃ under visible Xe illumination at ~350 mW/cm² ($\lambda > 400$ nm). The BiVO₄ NWs were etched for 5 min in 1.0 M HNO₃ prior to the experiment and the flask was evacuated after every 2 hours. (**Right**) Cumulative amount of evolved oxygen (data from plot on the left).

Figure S7. UV-Vis spectra of $BiVO_4$ NWs before and after the 6 h photocatalytic oxygen evolution reaction (OER).

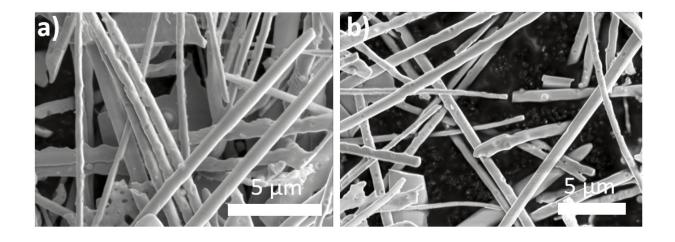
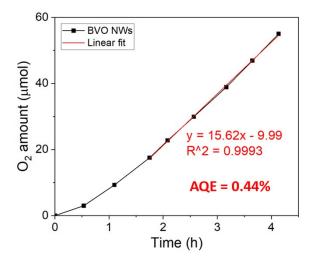
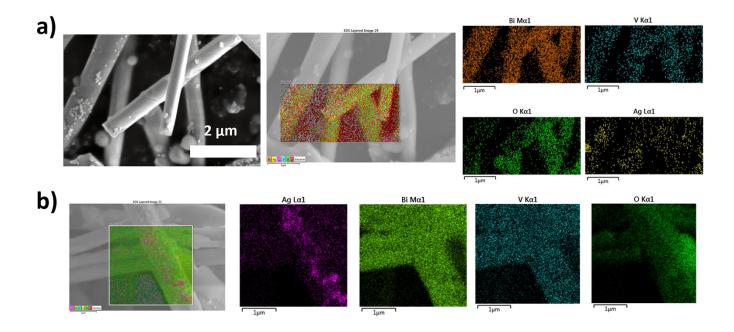




Figure S8. SEM images of $BiVO_4$ NWs (a) before and (b) after the OER experiment. The $BiVO_4$ NWs here were etched for 5 min in 1.0 M HNO₃ prior to the illumination experiment.

Figure S9. O_2 evolution of the BiVO₄ NWs in 0.02 M Fe(NO₃)₃ under illumination from a 405 nm LED (622 mW/cm²), as measured with a GaAsP photodetector (International Light). The area of illumination was 1.90 cm². The O₂ rate was obtained from the linear region of the curve.

Figure S10. EDX elemental mapping at the (a) nanowire tip and (b) lateral surface of $BiVO_4$ NWs after photodeposition of Ag. Ag was found to cover the lateral surface mainly, rather than the NW ends.

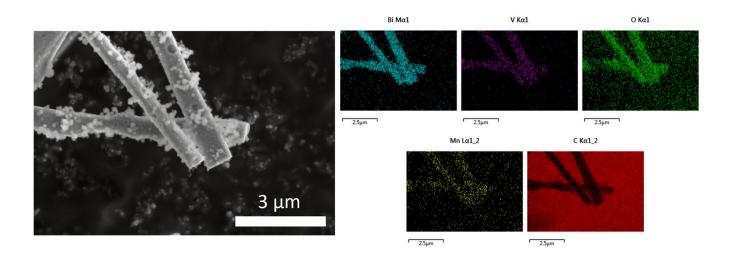


Figure S11. SEM and EDX elemental mapping of the BiVO₄ nanowire after 2 h photodeposition of MnO_x.

 Table S1. Apparent quantum efficiency (AQE), photocatalytic oxygen evolution and the corresponding

 experimental parameters of BiVO₄ NWs and other reported BiVO₄ photocatalysts.

Photocatalyst	e ⁻ acceptor	Light source	Light intensity/mW· cm ⁻²	O ₂ evolution rate	AQE/%	Reference #
BiVO ₄ NWs	Fe ³⁺	300 W Xe lamp + UV filter	\sim 550 mW/cm ²	28.75 μmol·h ⁻¹	0.44	This work
BiVO ₄ nanowires	Fe ³⁺	300 W Xe lamp + UV filter	N/A	0.19 μmol·h ⁻¹	N/A	1
Well-defined BiVO ₄ crystals	Fe ³⁺	300 W Xe lamp + UV filter	-	$\sim 150 \ \mu mol \cdot h$	71	2
Ir- FeCoO _x /BiVO ₄	$[Fe(CN)_6]^{3-}$ and HEP	300 W Xe lamp + UV filter	-	80 μmol·h ⁻¹	12.3	3
BiVO ₄ -100	Ag^+	300 W Xe lamp + UV filter	-	$4476\mu\text{mol}\cdot\text{h}^{-1}\cdot\text{m}^{-2}$	9.3	4
BiVO ₄ -100	Fe ³⁺	300 W Xe lamp + UV filter	-	1750 μmol·h ⁻ ¹ ·m ⁻²	4.5	4
BiVO ₄ fine particles	Fe ³⁺	300 W Xe lamp + UV filter	-	~90 μ mol \cdot h ⁻¹	1.2	5
F/Ce-codoped BiVO ₄	Ag^+	250 W Hg lamp + UV filter	-	$17.5 \ \mu mol \cdot h^{-1}$	-	6
Ni@NiO- loaded W:BiVO ₄ nanofibers	Ag^+	450 W Xe lamp + UV filter	-	0.075 μmol·h ⁻¹	-	7
mesoporous undoped BiVO ₄ NFs	Ag^+	300 W Xe lamp	-	13.7 μmol·h ⁻¹	-	8
Mesoporous Cu:BVO nanotubes/CoO x	Na ₂ S ₂ O ₈ /OH-	300 W Xe lamp + UV filter	-	7.004 μmol·h ⁻¹	2.63	9
24-faceted concave BiVO4	Ag^+	300 W Xe lamp + UV filter	-	178.8 μmol·h ⁻¹	30.7	10

References

- Liu, B.; Wu, C.-H.; Miao, J.; Yang, P. All Inorganic Semiconductor Nanowire Mesh for Direct Solar Water Splitting. *ACS Nano* 2014, 8 (11), 11739-11744. DOI: 10.1021/nn5051954.
- (2) Zhao, Y.; Ding, C.; Zhu, J.; Qin, W.; Tao, X.; Fan, F.; Li, R.; Li, C. A Hydrogen Farm Strategy for Scalable Solar Hydrogen Production with Particulate Photocatalysts. *Angew. Chem. Int. Ed.* 2020, *59* (24), 9653–9658. https://doi.org/10.1002/anie.202001438.
- (3) Qi, Y.; Zhang, J.; Kong, Y.; Zhao, Y.; Chen, S.; Li, D.; Liu, W.; Chen, Y.; Xie, T.; Cui, J.; Li, C.; Domen, K.; Zhang, F. Unraveling of Cocatalysts Photodeposited Selectively on Facets of BiVO₄ to Boost Solar Water Splitting. *Nat. Commun.* 2022, *13* (1), 484. https://doi.org/10.1038/s41467-022-28146-6.
- (4) Deng, Y.; Zhou, H.; Zhao, Y.; Yang, B.; Shi, M.; Tao, X.; Yang, S.; Li, R.; Li, C. Spatial Separation of Photogenerated Charges on Well-Defined Bismuth Vanadate Square Nanocrystals. *Small* 2022, *18* (5), 2103245. https://doi.org/10.1002/smll.202103245.
- (5) Okunaka, S.; Tokudome, H.; Hitomi, Y.; Abe, R. Preparation of Fine Particles of Sheelite-Monoclinic Phase BiVO₄ via an Aqueous Chelating Method for Efficient Photocatalytic Oxygen Evolution under Visible-Light Irradiation. J. Mater. Chem. A 2016, 4 (10), 3926–3932. https://doi.org/10.1039/C5TA09789D.
- (6) Abbood, H. A.; Alabdie, A.; Al-Hawash, A.; Abbood, A. A.; Huang, K. Fabrication of Double-Sided Comb-like F/Ce Co-Doped BiVO₄ Micro/Nanostructures for Enhanced Photocatalytic Degradation and Water Oxidation. *J. Nanoparticle Res.* 2020, *22* (4), 78. https://doi.org/10.1007/s11051-020-04792-z.

- (7) Ro Yoon, K.; Wan Ko, J.; Youn, D.-Y.; Beum Park, C.; Kim, I.-D. Synthesis of Ni-Based Co-Catalyst Functionalized W:BiVO₄ Nanofibers for Solar Water Oxidation. *Green Chem.* 2016, *18* (4), 944–950. https://doi.org/10.1039/C5GC01588J.
- (8) Yu, M.; Shang, C.; Ma, G.; Meng, Q.; Chen, Z.; Jin, M.; Shui, L.; Zhang, Y.; Zhang, Z.; Yuan, M.; Wang, X.; Zhou, G. Synthesis and Characterization of Mesoporous BiVO₄ Nanofibers with Enhanced Photocatalytic Water Oxidation Performance. *Appl. Surf. Sci.* 2019, 481, 255–261. https://doi.org/10.1016/j.apsusc.2019.03.056.
- (9) He, B.; Li, Z.; Zhao, D.; Liu, H.; Zhong, Y.; Ning, J.; Zhang, Z.; Wang, Y.; Hu, Y. Fabrication of Porous Cu-Doped BiVO₄ Nanotubes as Efficient Oxygen-Evolving Photocatalysts. ACS Appl. Nano Mater. 2018, 1 (6), 2589–2599. https://doi.org/10.1021/acsanm.8b00281.
- (10) Hu, J.; He, H.; Li, L.; Zhou, X.; Li, Z.; Shen, Q.; Wu, C.; Asiri, A. M.; Zhou, Y.; Zou, Z. Highly Symmetrical, 24-Faceted, Concave BiVO₄ Polyhedron Bounded by Multiple High-Index Facets for Prominent Photocatalytic O₂ Evolution under Visible Light. *Chem. Commun.* 2019, *55* (33), 4777–4780. https://doi.org/10.1039/C9CC01366K.