Supporting information

Engineering of interfacial active sites in composites of troilite phase nano-leaves interacting with nickel oxide adorned carbon nanotubes for robust overall water splitting

Sajjad Hussain^{‡a,b}, Zulfqar Ali Sheikh^{‡c}, Ghazanfar Nazir ^b, Iftikhar Hussain^d, Shoyebmohamad F. Shaikh^e, Hyun-Seok Kim^f, Deok-Kee Kim^c, Jongwan Jung ^{a,b}, Dhanasekaran Vikraman^{*f}

- *Corresponding Author's E-mail: v.j.dhanasekaran@gmail.com
- [‡]These authors contributed equally.

^{a.} Hybrid Materials Center (HMC), Sejong University, Seoul 05006, Republic of Korea.

^{b.} Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea.

^{c.} Department of Electrical Engineering and Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea.

^{d.} Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.

^e Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.

^{f.} Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.

S1. Characterization

X-ray photoelectron spectroscopy (XPS, Theta Probe by Thermo Fisher Scientific) was employed to establish the chemical composition and binding energy state of the composite structures. The morphology of prepared nanostructures was investigated using an X-ray energy dispersive spectrometer connected field-emission scanning electron microscope (FESEM, Hitachi, SU-8010). To examine the shape and microstructure of the material, JEOL JEM-ARM200F highresolution transmission electron microscope (HR-TEM) was engaged. Renishaw System 3000 was engaged for the Raman analysis with a 514 nm excitation laser. Empyrean X-ray diffractometer equipped with Cu-K α radiation ($\lambda = 1.540$ Å) was used for the structural analysis.

All potentials were adjusted to the reversible hydrogen electrode (RHE) using the equation: $E(RHE) = E(vs. Hg/HgO) + E^{\circ}(Hg/HgO) + 0.0592 \times pH.$

Figure S1. (a) Raman and (b) XRD spectra of pure FeS, NiO and CNT.

Figure S2. SEM images of (a-c) NiO and (d-f) FeS.

Figure S3. Elemental mapping of NF-2 composites

Figure S4. EDS spectrum of NFC-2 NiO/FeS@CNT hybrid composite along with element composition.

Figure S5. TEM elemental mapping of NFC-2 composites

Figure S6. XPS survey scan of NFC-2 NiO/FeS@CNT hybrid composite.

Figure S7. The BET and pore size distribution (inset) of (a) NF-2 NiO/FeS and (b) NFC-2 NiO/FeS@CNT hybrid composites.

Figure S8. LSV OER profile of pure nickel foam

Figure S9. LSV profiles of NFC-2 NiO/FeS@CNT hybrid composites before and after 24-h continuous OER reaction

Figure S10. LSV HER profile of pure nickel foam

Figure S11. LSV profiles of NFC-2 NiO/FeS@CNT hybrid composites before and after 24-h continuous HER reaction

Figure S12. CVs at the different scan rate in the non-faradaic region for (a) NiO, (b) NF-2 and (c) NFC-2 electrocatalysts.

Figure S13. ECSA-normalized (a) OER and (b) HER activity of NiO, FeS, NF-1, NF-2, NF-3, NFC-1, NFC-2 and NFC-3 electrocatalysts

Figure S14. Mass ratio-normalized (a) OER and (b) HER activity of NiO, FeS, NF-1, NF-2, NF-3, NFC-1, NFC-2 and NFC-3 electrocatalysts.

Figure S15. SEM images of NFC-2 NiO/FeS@CNT hybrid composites coated nickel foam (a-b) before and (c-d) after 24 h overall water splitting performance in alkaline medium.

Figure S16. XPS profiles of after the 24 h overall water splitting reaction (a) Ni 2p; (b) O 1s; (c) Fe 2p; (d) S 2p and (e) C 1s binding energy for the NFC-2 FeS/NiO@CNT hybrid composite.

Electrocatalyst	Electrolyte	η (mV)@ 10 mA/cm ²	Tafel Slope (mV∙dec ⁻¹)	Ref
Pure nickel foam	1М КОН	850 @ 10 mA/cm ²	265	This moule
NFC-2 NiO/FeS@CNT	1М КОН	218 @ 10 mA/cm ²	52	- I IIS WORK
Ni ₃ S ₄ /NiS ₂ /FeS ₂	1М КОН	230 @ 10 mA/cm ²	49	1
Mo–FeS nanosheets	1M KOH	210 @ 10 mA/cm ²	50	2
NiS ₂ /FeS ₂ /NC	1M KOH	231 @ 10 mA/cm ²	44.29	3
NiO@Ni/WS ₂ /CC	1М КОН	347 @ 50 mA/cm ²	108.9	4
Ni _{0.7} Fe _{0.3} S ₂	1М КОН	198 @ 10 mA/cm ²	56	5
Ni-doped O-incorporated FeS ₂	1М КОН	255@100 mA/cm	58.29	6
Ce-FeS ₂ /Ni ₃ S ₂	1М КОН	190 @ 10 mA/cm ²	96.1	7
FeS/Ni ₃ S ₂ @NF	1М КОН	192@10 mA/cm	70	8
FeS ₂ /FeOOH-ZnO@N	1М КОН	177@10 mA/cm	105.79	9
core-shell FeS ₂ @FeOOH	1М КОН	170@10 mA/cm	60	10
FeS ₂ /CoS ₂ NSs	1М КОН	302@10 mA/cm	42	11
Ni-Fe-LDH/Li ₂ S ₈ -140	1М КОН	246@10 mA/cm	38.89	12
1T-Co-WS ₂ /NiTe ₂ /Ni	1М КОН	290@30 mA/cm	98	13
NiS ₂ /FeS ₂ /NC	1М КОН	231@10 mA/cm	44.29	3
Fe ₃ O ₄ -FeS ₂	1М КОН	253@10 mA/cm	48	14
γ-Fe ₂ O ₃ @FeS ₂ @C	1М КОН	268@10 mA/cm	54	15
FeS ₂ @MXene	1М КОН	240@10 mA/cm	58.6	16
Co–FeS ₂ /CoS ₂	1М КОН	278@10 mA/cm	73	17
NiFeS@Ti ₃ C ₂ MXene/NF	1М КОН	290@20 mA/cm	45	18
Ni ₃ S ₂ /FeNi ₂ S ₄ hybrid	1М КОН	210@20 mA/cm	36.2	19

 Table S1. OER catalytic performances of various electrocatalysts

Ni ₂ FeS@NSC	1M KOH	247@10 mA/cm	150	20
Ni ₃ S ₂ -Fe ₅ Ni ₄ S ₈	1M KOH	240@100 mA/cm	48.1	21
FeS ₂ /TiO ₂	1M KOH	230@100 mA/cm	48.1	22
NiFeS/NF	1M KOH	215@100 mA/cm	56.37	23
NaFeS ₂ /NF	1M KOH	370@200 mA/cm	90	24
CuFeS ₂ /rGO	1М КОН	176@10 mA/cm	216	25

Electrocatalyst	Electrolyte	η (mV)	Tafel Slope(mV·dec ⁻¹)	Ref
Pure nickel foam	1М КОН	340 @ 10 mA/cm ²	141	This work
NFC-2 NiO/FeS@CNT	1М КОН	64@10 mA/cm ²	38	I IIIS WOLK
FeS ₂ @MXene	1M KOH	87@10 mA/cm ²	97.7	16
NiO–NiMoO₄/mCNTs	1M KOH	109 @10 mA/cm ²	49.2	26
FeS ₂ /CoS ₂ NSs	1M KOH	78.2@10 mA/cm ²	44	11
Ni _{0.7} Fe _{0.3} S ₂	1М КОН	155@10 mA/cm ²	109	5
Co-MoS ₂ @Mo ₂ CTx	1M KOH	112@10 mA/cm ²	82	27
FeS/Ni ₃ S ₂ @NF	1М КОН	130@10 mA/cm ²	124	8
FeS ₂ /FeOOH-ZnO@N	1M KOH	74@10 mA/cm ²	93.96	9
Ni-doped O-incorporated FeS ₂	1М КОН	157@10 mA/cm ²	112.5	6
NiS ₂ /FeS ₂ /NC	1M KOH	172 @ 10 mA/cm ²	68.56	3
Ni ₃ S ₄ /NiS ₂ /FeS ₂	1М КОН	196@10 mA/cm ²	110	1
Co–FeS ₂ /CoS ₂	0.5 M H ₂ SO ₄	103@10 mA/cm ²	56	17
NiFeS@Ti ₃ C ₂ MXene/NF	1М КОН	180@20 mA/cm ²	177	18
Ni ₃ S ₂ /FeNi ₂ S ₄ hybrid	1М КОН	50@20 mA/cm ²	117	19
1T-Co-WS ₂ /NiTe ₂ /Ni	1М КОН	88@10 mA/cm	68	13
Ni ₂ FeS@NSC	1М КОН	271@10 mA/cm	102	20
NiFeS/NF	1М КОН	196@100 mA/cm	102.93	23
NaFeS ₂ /NF	1М КОН	220@100 mA/cm	31	24

 Table S2. HER catalytic performances of various electrocatalysts

Electrocatalyst	Electrolyte	η (V) @ 10 mA/cm ²	Ref
NFC-2 NiO/FeS@CNT	1 М КОН	1.465	This work
NiO–NiMoO ₄ /mCNTs	1М КОН	1.57	26
Ni ₃ S ₄ /NiS ₂ /FeS ₂	1М КОН	1.68	1
FeS/Ni ₃ S ₂ @NF	1М КОН	1.51	8
NiFeS@Ti ₃ C ₂ MXene/NF	1М КОН	1.85	18
Ni _{0.7} Fe _{0.3} S ₂	1М КОН	1.62	5
FeS ₂ /FeOOH-ZnO@N	1М КОН	1.41	9
FeS ₂ /CoS ₂ NSs	1М КОН	1.47	11
Ni-doped O-incorporated FeS ₂	1М КОН	1.58	6
FeS ₂ @MXene	1М КОН	1.57	16
NiS ₂ /FeS ₂ /NC	1М КОН	1.58	3
Ni ₃ S ₂ /FeNi ₂ S ₄ hybrid	1М КОН	1.55	19

Table S3. Comparison of overall water splitting performances of various electrocatalysts

References

- W. Wang, W. Wang, Y. Xu, X. Ren, X. Liu and Z. Li, *Applied Surface Science*, 2021, 560, 149985.
- Z. Shao, H. Meng, J. Sun, N. Guo, H. Xue, K. Huang, F. He, F. Li and Q. Wang, ACS Applied Materials & Interfaces, 2020, 12, 51846-51853.
- 3. S. Wang, P. Ning, S. Huang, W. Wang, S. Fei, Q. He, J. Zai, Y. Jiang, Z. Hu and X. Qian, *Journal of Power Sources*, 2019, **436**, 226857.
- 4. D. Wang, Q. Li, C. Han, Z. Xing and X. Yang, ACS Central Science, 2018, 4, 112-119.
- 5. J. Yu, G. Cheng and W. Luo, *Journal of materials chemistry A*, 2017, **5**, 15838-15844.
- S. Shit, S. Bolar, N. C. Murmu and T. Kuila, *ACS sustainable chemistry & engineering*, 2019, 7, 18015-18026.
- J. Wu, D. Wu, W. Yuan, Y. Luo, Z. Han, X. Xu, S. Chang, M. Wen and C. Huang, Chemical Engineering Journal, 2025, 161821.
- 8. H. Li, S. Yang, W. Wei, M. Zhang, Z. Jiang, Z. Yan and J. Xie, *Journal of Colloid and Interface Science*, 2022, **608**, 536-548.
- 9. Y. Yang, Y. Chen, Y. Xiong, Y. He, Q. Sun, D. Xu and Z. Hu, *Journal of Alloys and Compounds*, 2024, 174525.
- 10. C. Yue, X. Zhang, J. Yin, H. Zhou, K. Liu and X. Liu, *Applied Catalysis B:* Environmental, 2023, **339**, 123171.
- Y. Li, J. Yin, L. An, M. Lu, K. Sun, Y. Q. Zhao, D. Gao, F. Cheng and P. Xi, *Small*, 2018, 14, 1801070.
- 12. Y. Lu, F. Ma, J. Mao, H. Zhang, J. Wang, X. Liu, X. Ren and R. Chen, *Journal of Alloys* and Compounds, 2023, **960**, 170842.
- D. R. Paudel, U. N. Pan, R. B. Ghising, P. P. Dhakal, V. A. Dinh, H. Wang, N. H. Kim and J. H. Lee, *Nano Energy*, 2022, **102**, 107712.
- M. J. Wang, X. Zheng, L. Song, X. Feng, Q. Liao, J. Li, L. Li and Z. Wei, *Journal of Materials Chemistry A*, 2020, 8, 14145-14151.
- 15. K. Chen, R. Rajendiran, D. H. Lee, J. Diao and O. L. Li, *Journal of Alloys and Compounds*, 2021, **885**, 160986.
- 16. Y. Xie, H. Yu, L. Deng, R. Amin, D. Yu, A. E. Fetohi, M. Y. Maximov, L. Li, K. El-

Khatib and S. Peng, Inorganic Chemistry Frontiers, 2022, 9, 662-669.

- 17. K. Wang, W. Guo, S. Yan, H. Song and Y. Shi, RSC advances, 2018, 8, 28684-28691.
- D. Chanda, K. Kannan, J. Gautam, M. M. Meshesha, S. G. Jang, V. A. Dinh and B. L. Yang, *Applied Catalysis B: Environmental*, 2023, **321**, 122039.
- 19. Y. Wu, Y. Li, M. Yuan, H. Hao, X. San, Z. Lv, L. Xu and B. Wei, *Chemical Engineering Journal*, 2022, **427**, 131944.
- 20. J. Chang, S. Zang, F. Song, W. Wang, D. Wu, F. Xu, K. Jiang and Z. Gao, *Applied Catalysis A: General*, 2022, **630**, 118459.
- Y. Wu, Y. Li, Z. Lü, L. Xu and B. Wei, *Journal of Materials Science*, 2020, 55, 15963-15974.
- Z. Chen, R. Zheng, S. Deng, W. Wei, W. Wei, B.-J. Ni and H. Chen, *Journal of Materials Chemistry A*, 2021, 9, 25032-25041.
- J. Chen, L. Zhang, J. Li, X. He, Y. Zheng, S. Sun, X. Fang, D. Zheng, Y. Luo and Y. Wang, *Journal of Materials Chemistry A*, 2023, 11, 1116-1122.
- V. Dileepkumar, C. Pratapkumar, R. Viswanatha, B. M. Basavaraja, R. R. Maphanga, M. Chennabasappa, N. Srinivasa, S. Ashoka, Z. Chen and S. Rtimi, *Chemical Engineering Journal*, 2021, 426, 131315.
- 25. S. Swathi, R. Yuvakkumar, G. Ravi, M. Thambidurai, H. D. Nguyen and D. Velauthapillai, *ACS Applied Nano Materials*, 2023, **6**, 6538-6549.
- 26. Q. Xue, Y. Wu, J. Hao, L. Ma, Y. Dang, J.-J. Zhu and Y. Zhou, ACS Applied Materials & Interfaces, 2023, 15, 31470-31477.
- 27. J. Liang, C. Ding, J. Liu, T. Chen, W. Peng, Y. Li, F. Zhang and X. Fan, *Nanoscale*, 2019, 11, 10992-11000.