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1.1 Characterizations

Crystallographic data for the samples were obtained using a powder X-ray 

diffractometer (D8 Advance (Germany)) with Cu Kα1 (λ=1.54 Å) source. The Fourier 

transform infrared (FT-IR) spectra were acquired with Fourier infrared spectroscopy 

(W QF-310) in 400-4000 cm-1. Raman was tested by Alpha300R with a 532 nm TEM00 

laser. The morphology of the materials was characterized using a field-emission 

scanning electron microscope (SEM, Hitachi Regulus8100), and the elemental 

composition of the samples was analyzed using an energy-dispersive X-ray 

spectrometer. Transmission electron microscopy (TEM) images were obtained using 

JEOL JEM-2100 (100 kV). The materials were analyzed using an X-ray photoelectron 

spectroscopy (XPS) utilizing Kratos AXIS Ultra DLD (UK). UV-vis diffuse reflectance 

spectra (UV-vis-DRS) were obtained on a Shimadzu UV-3600 spectrophotometer 

using BaSO4 as a reflectance standard. The pore structure changes of powder samples 

were recorded through N2 adsorption/analytic isotherm curves (BET, 3H-2000PS2) and 
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small angle neutron scattering (SANS，Chinese Spallation Neutron Source 

(Dongguan, China)).

1.2 Electrochemical measurements

For electrochemical investigations, electrocatalytic water splitting and 

supercapacitors were operated with electrochemical workstation (CHI760E). The 

reference electrode in all three-electrode experiments with 1M KOH was Hg/HgO, 

while the counter electrode was Pt plate. Electrochemical impedance spectroscopy 

(EIS) measurements were performed by scanning the frequency from 100 - 0.01 kHz. 

The double-layer capacitance (Cdl) was recorded using the plots of  
∆j
2

= (janode - jcathode)/2

at a non-faradaic potential against different scan rates (10-100 mV s-1). At a scan rate 

of 5 mV s-1, linear sweep voltammograms (LSV) in OER and HER were recorded and 

calculated without iR-correction. Using the Nernst equation, the measured potentials 

were converted to the reversible hydrogen electrode (RHE) scale: 

. The Tafel curves were obtained from LSV E(RHE) = E(Hg/HgO) + 0.0592 × pH + 0.098

curves based on  (b: Tafel slope; η: overpotential; j: current density). η = blog(j) + a

   Supercapacitor measurement and calculations: The GCD and CV curves were also 

tested on electrochemical workstation using 1 M KOH aqueous solution. Moreover, the 

mass specific capacitance (Cm, F g-1) was calculated according to . Cm = I × Δtd/(m × ΔV)

Where I is the constant discharge current (A), Δtd is the discharge time, m is the mass 

of active material (The amount of active substance contained in each SC-FeNiCeP/NF 

single side: 0.0049 g), and ΔV is the voltage window. The asymmetric supercapacitors 

were assembled by using 400N-CDs/FeNi-TDC as positive electrode, AC (which 



mixed with carbon black and PTFE with a weight ratio of 8:1:1) coated on nickel foam 

substrate as negative electrode and 1 M KOH aqueous solution as the electrolyte. The 

energy density and power density of assembled ASC are calculated based on equation 

and , respectively. Among them, C is the specific E = C × ΔV2/(3.6 × 2) P = 3600 × E/Δt

capacitance.

Figure S1. Schematic diagram of the preparation of N-CDs.

Figure S2. (a) XRD pattern and (b) Excitation-dependent PL of N-CDs.



Figure S3. SEM, EDX element mapping and the element content distribution of 400N-

CDs/FeNi-TDC.

Figure S4. Pore size distribution of FeNi-TDC, 200N-CDs/FeNi-TDC, 400N-

CDs/FeNi-TDC and 800N-CDs/FeNi-TDC.



Figure S5. High-resolution XPS spectra of FeNi-TDC and 400N-CDs/FeNi-TDC 

samples: (a) S 2p; (b) N 2p; (c) O 1s and (d) C 1s.

Figure S6. (a) LSV of the FeNi-TDC, 200N-CDs/FeNi-TDC, 400N-CDs/FeNi-TDC, 

800N-CDs/FeNi-TDC, IrO2/NF and NF in OER.



Figure S7. CV curve of as-obtained samples at a scan rate between 10 and 100 mV s-1: 

(a) FeNi-TDC, (b) 200N-CDs/FeNi-TDC, (c) 400N-CDs/FeNi-TDC and (d) 800N-

CDs/FeNi-TDC.



Figure S8. (a) Comparison of overpotential between the 400N-CDs/FeNi-TDC and 

other recently reported electrocatalysts in HER; (d) V-t curves of 400N-CDs/FeNi-TDC 

and Pt-C/NF at 10 mA cm-2; (c) Multicurrent steps curve of the 400N-CDs/FeNi-TDC 

at different current density; (d) Compared with reported applied voltages of OWS.



Figure S9. (a) CV curves of 400N-CDs/FeNi-TDC at different scan rates; GCD curves 

of FeNi-TDC (b); 200N-CDs/FeNi-TDC (c) and 800N-CDs/FeNi-TDC (d).



Figure S10. (a) SEM image, (b) Raman of post-OER 400N-CDs/FeNi-TDC; High-

resolution XPS spectra of the initial and post-OER 400N-CDs/FeNi-TDC: (c) survey 

spectra; (d) Ni 2p; (e) Fe 2p; (f) S 2p; (g) N 1s; (h) O 1s and (i) C 1s.



Figure S11. (a) HRTEM; (b) corresponding elemental color mappings of the 400N-

CDs/FeNi-TDC after the OER test.



Table S1. A comparison of 400N-CDs/FeNi-TDC electrocatalyst with recently 

reported catalysts in OER performance

Electrocatalyst 𝝶(mV) b(mV dec-1) Stability Ref.

FeCo3(DDA)2 260 at 10 mA cm-2 46.86 2000h [1]

CoNiFc‐MOF
209 at 10 mA cm-2 39 30h [2]

Ni(DMBD)-MOF 295 at 10 mA cm-2 32 100h [3]

Co[C6H6N4]NO2 280 at 10 mA cm-2 33 20h [4]

NiFe-LDH/MOF 208 at 20 mA cm-2 61 100h [5]

Fe-B/Fe-MOF/IF 210 at 10 mA cm-2 38 100h [6]

Ni8Co2-BDC 274 at 10 mA cm-2 73.1 48h [7]

Ni0.67Fe0.33-MOF/CFP 281 at 10 mA cm-2 38 80h [8]

NiFe-MOF/G 258 at 10 mA cm-2 49 30h [9]

NiFe-MOF NSs@CQDs-COOH 261 at 10 mA cm-2 56 200h [10]

CoNi MOFs-mCNTs 306 at 10 mA cm-2 42 15h [11]

Co-ZIF/CDs/CC 226 at 10 mA cm-2 147 24h [12]

FeNiCo-MIL/Ti3C2 231 at 10 mA cm-2 34.5 24h [13]

MXene@Ce-MOF 270 at 10 mA cm-2 163.8 12h [14]

CQDs 10 @NiFe-MOF-A 289 at 10 mA cm-2 52.7 30,000s [15]

400N-CDs/FeNi-TDC 209 at 10 mA cm-2 18.9 70 h
This 

work



Table S2. A comparison of 400N-CDs/FeNi-TDC electrocatalyst with recently 

reported catalysts in HER performance

Electrocatalyst 𝝶(mV) b (mV dec-1) Stability Ref.

MXene@Ce-MOF 220 at 10 mA cm-2 149.9 12h [14]

2D Ti3C2Tx@MOF 104 at 10 mA cm-2 79 30 h [16]

MOF(Ni)-GR (4%) 268 at 10 mA cm-2 108 24 h [17]

Co@Ni/Fe-MS/MOF 174 at 10 mA cm-2 114.35 80 h [18]

NH2-NiCoFe-MIL-101 295 at 0.6 A cm-2 69 100 h [19]

CdFe-BDC 148 at 10 mA cm-2 180.71 60 [20]

NiFe-MOF d.a 116 at 10 mA cm-2 75.8 30 h [21]

ZIF-67 (S16) 171 at 10 mA cm-2 82 15 h [22]

DE-NiMOF-0.5 188 at 10 mA cm-2 175 24 h [23]

CeNiFe-MOF 113 at 10 mA cm-2 59.4 \ [24]

NHCNT/Ni-MOF-4 159.8 at 10 mA cm-2 107.69 50 h [25]

FeNi3-Fe3O4 NPs/MOF-

CNT

108 at 10 mA cm-2 96.75 20 h [26]

400N-CDs/FeNi-TDC 99 mV at 10 mA cm-2 71.01 70 h This work



Table S3. Summary of various MOF-based electrodes for overall water splitting

Electrocatalyst Voltage Stability Ref.

Ni(DMBD)-MOF 1.50 V@10 mA cm−2 100 h [3]

Fe-B/Fe-MOF/IF 1.53 V@10 mA cm−2 10 h [6]

Ni8Co2-BDC 1.52 V@10 mA cm−2 48 h [7]

Ni0.67Fe0.33-MOF/CFP 1.48 V @10 mA cm−2 80 h [8]

CPM-30 1.65 V @10 mA cm−2 40 h [27]

CdFe-BD 1.68 V@10 mA cm−2 12 h [20]

NiFe-MOF d.a 1.496 V @10 mA cm−2 30 h [21]

CeNiFe-MOF 1.56 V @10 mA cm−2 200 h [24]

NHCNT/Ni─MOF-4 1.77 V @10 mA cm−2 \ [25]

Fe3O4 NPs/MOF-CNT 1.59 V @10 mA cm−2 20 h [26]

Co-M-Fe/Ni(150) 1.52 V @10 mA cm−2 24 h [28]

TIT-1@NS/NF 1.68 V @10 mA cm−2 16 h [29]

400N-CDs/FeNi-TDC 1.54 V @ 10 mA cm−2 50 h This work



Table S4. Summary of various MOF-based electrocatalyst for supercapacitor.

ACS devices Operating 

voltage

Energy density Power density Ref.

E-NCT MOF//AC 1.5 V 29.34 Wh kg-1 377.27 W kg-1 [30]

Ni-Co PyMOF//AC 1.5 V 37.43 Wh kg-1 850.02 W kg-1 [31]

Cu-PyAc-Am2Ac-Ni // AC 1.5 V 58.95 Wh kg-1 747.25 W kg-1 [32]

CPM-10//AC 1.5 V 15.55 Wh kg-1 750 W kg-1 [27]

MOF8:2//rGO 1.6 V 40 Wh kg-1 800 W kg-1 [33]

MOF@HsGDY//AC 1.6 V 43.3 Wh kg-1 807.6 W kg-1 [34]

N-GLC/MOF-74//AC 1.5 V 52.5 μWh cm-2 0.75 mW cm-2 [35]

400N-CDs/FeNi-TDC||AC 1.5 V 60.63 Wh kg-1 750 W kg-1 This 

work
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