Supporting Information

Advancements towards optimization of metal-organic frameworks-based polymer electrolyte membranes for aqueous redox flow batteries

Prerana Sharma,^{a,c,*} Lars Röntzsch^c and Vinod K. Shahi^{a,b,*}

^aElectro-Membrane Processes Laboratory, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India ^cChair of Thermal Energy Technology, Hydrogen Research Centre, Brandenburg university of Technology (BTU), Siemens-Halske-Ring 13, Cottbus-03046, Germany

Fax: +91-0278-2566970; Phone: +91-278-2569445; E-mail: vkshahi@csmcri.res.in;

sharmaprerana73@gmail.com

Tuble of cell p	chiormanice of morganic	bused / III bs				
Туре	Positive	Negative	Electrolyte	E _{Cell} (V)	EE (%)	Ref
Vanadium- Based	$VO_2^+ + e^- \leftrightarrow VO^{2+}$	$V^{2+} \leftrightarrow V^{3+} + e^{-}$	1.7-2M V in 1.5-5M H_2SO_4 , HCl, H_3PO_4 , and CH_3SO_3H	1.26	82-87	1-3
		Zinc-based				
Zn-Br	$Br_2 + 2e^- \leftrightarrow 2Br^-$	$Zn \leftrightarrow Zn^{2+} + 2e^{-}$	2M ZnBr ₂ -3M KCl- 0.8M MEP and 2.25M ZnBr ₂ -0.5M ZnCl ₂ -0.8M	1.85	69.4- 82.1	4-6
		2 -	MEP+Br ₂			
	$I_3^- + 2e^- \leftrightarrow 3I^-$	$Zn \leftrightarrow Zn^2 + + 2e^-$	0.5-5.0M Znl ₂	0.9- 1.27	67.8- 91	7
Zn-I ₂ (Zn-I ₂ Br)	$I_3^- + 2e^- \leftrightarrow 3I^-$	-	7.5M KI-3.75M ZnBr ₂	1.35	81	8
	-	-	2-6M KI+1-3 M ZnBr ₂	1.33	80	9
	$2I^- + Br^- \leftrightarrow I_2 Br^$	$Zn^{2+} + 2e^{-} \leftrightarrow Zn$	5M Znl ₂ -2.5M ZnBr ₂	1.35	NA	10
Zn-Ce	$Zn \leftrightarrow Zn^{2+} + 2e^{-}$	$2Ce^{4+} + 2e^{-} \leftrightarrow 2Ce^{3}$	1.5MZn(CH ₃ SO) ₂ /0. 2M Ce(CH ₃ SO ₃) ₃ in 0.5M CH ₃ SO ₃ H	2.43	75	11
Alkaline Zn-I ₂	$I_3^- + 2e^- \leftrightarrow 3I^-$	$Zn(OH)^{2}_{4} + 2e^{-} \rightarrow Zn$	Zn plate in 6M KOHIII6M KI-6M I ₂	1.79	80	12
Alkaline Zn- Fe	$Fe(CN)_{6}^{4-} \leftrightarrow Fe(CN)^{3}$	$\left(Zn(OH)^2_4 + 2e^- \rightarrow Zn\right)$	1.0M Na ₄ Fe(CN) ₆ – 3M KOH $ 0.5M$ Zn(OH) ₄ ^{2–} –4M NaOH	1.74	89	13

Table S1 Cell performance of Inorganic-based ARFBs

	$Fe(CN)^{4}_{6} \leftrightarrow Fe(CN)^{3}_{4} Zn(OH)^{2}_{4} + 2e^{-} \rightarrow Z_{1}$	0.4M Zn(OH) ₄ ^{2–} + 3M NaOH 0.8M Na ₄ Fe(CN) ₆ +3M KOH	1.81	87.72	14
Zn-Fe	$2Fe^{3+} + 2e^{-} \leftrightarrow 2Fe^{2} Zn(OH)^{2-}_{4} + 2e^{-} \rightarrow Z_{1}$	0.3MNa ₂ [Zn(OH) ₄]– 0.5 M NaCl–2.4M NaOH 0.6MFeCl ₂ –0.5MNaCl–1MHCl	≈1.7	75.9	15
Neutral Zn-Fe	$Fe^{3+}(Gly)_2 + e^- \leftrightarrow F Zn^{2+} + 2e^- \leftrightarrow Zn$	0.8M ZnBr ₂ -2.0M KCl 1.6M FeCl ₂ - 3.2M glycine-2.0 M KCl	1.4	84	16
Acidic Zn-Fe	$Fe^{3+} + e^- \leftrightarrow Fe^{2+} \qquad Zn^{2+} + 2e^- \leftrightarrow Zn$	1M ZnSO ₄ –1.5M HAc/NaAc 1M FeCl ₂ –1.5M H ₂ SO ₄	1.53	71.1	17
	$Fe^{3+} + e^- \leftrightarrow Fe^{2+} \qquad Zn^{2+} + 2e^- \leftrightarrow Zn$	1.6M $ZnCl_2-0.8M$ FeCl_2-2M NH_4Cl- 2gL ⁻¹ PEG8000	1.2	68	18
	Iron-based	0			
Fe-Cr	$Fe^{2+} + e^- \leftrightarrow Fe^{3+}$ $Cr^{2+} \leftrightarrow Cr^{3+} + e^-$	$1MFeCl_2/1MCrCl_3$ in 2–3M HCl	1.18	73	19
Fe-V	$Fe^{2+} + e^- \leftrightarrow Fe^{3+} \qquad V^{2+} \leftrightarrow V^{3+} + e^-$	1M FeCl ₂ in 2M HCl/2M V in 4M H ₂ SO ₄	1.02	80	20
All-Iron	$Fe^{2+} + e^{-} \leftrightarrow Fe^{3+}$ $Fe^{2+} + 2e^{-} \leftrightarrow Fe$	FeCl ₂ (Negative) FeCl ₂ & FeCl ₃	1.21	>45	21
	$Fe(CN)_{6}^{3-} + e^{-} \leftrightarrow Fe([Fe(TEOA)OH]^{-} + e^{-})$	Fe-TEOA in 0.8M alkaline (Negative)	1.22	73	21
Fe-organic complex	$Fe(CN)_{6}^{3-} + e^{-} \leftrightarrow Fe(Cr(PDTA)^{-} + e^{-} \leftrightarrow C$	chrome alum with PDTA in the presence of KOH and buffered at pH 9.5 with 0.2 M KB _i (Negative) $K_3Fe(CN)_6$ and $K_4Fe(CN)_6$ (0.75 M total Fe conc.) and buffered with 25 mM KBi (Positive)	2.13	76-80	22
	$[Co(mTEA)(H_2O)] + [Fe(TEOA)OH]^- + e$	cobalt with 1- [Bis(2- hydroxyethyl)amin o]-2-propanol in 5M NaOH (Positive) iron with triethanolamine in	0.93	71	23

			5 M NaOH			
		Doluculopido bos	(Negative)			
Polyculphido	$D_{m} + 2a^{-} \wedge 2D_{m}^{-}$	Polysuipnide-base $s^2 - 12s^2 - 32s^2 - 32s^$	$\frac{20}{5M} = \frac{12M}{2}$	1 26	70	24
Bromine	$BT_2 + 2e \leftrightarrow 2BT$	$S_4 + 2e \leftrightarrow 2S_2$	Na_2S_5 and $1M$	1.50	72	24
Polysulphide- Iodine(PSIB)	$I_3^- + 2e^- \leftrightarrow 3I^-$	$2S^2 \rightarrow S_2^2 + 2e^-$	2-6M KI+2-3.3M K ₂ S ₂	1.05	63-73	25
Polysulphide- Iron	$Fe(CN)_{6}^{3-} + e^{-} \leftrightarrow Fe(CN)_{6}^{3-}$	$\frac{1}{2}S_4^2 + e^- \leftrightarrow S_2^2$	1M K ₃ Fe(CN) ₆ -1M Na ₂ S ₂	0.91	74	26
Air-breathing	Acidic catholyte:	$xS_{y}^{2} + 2(y - x)e^{-} \leftrightarrow$	1M Li ₂ S ₄ -1M LiOH	1.26	-	27
S-O ₂	$2H_20 \leftrightarrow O_2 + 4H^+ + 4$	y w y	or NaOH (Negative) 1M Li ₂ SO ₄ or			
	Alkaline catholyte: $40H^{-} \leftrightarrow 0_{2} + 2H_{2}O + 2H_{3}O$	$xS_{y}^{2^{-}} + 2(y-x)e^{-} \leftrightarrow$	Na_2SO_4 -0.1 or 0.5M H ₂ SO ₄ (Positive)			
	1011 (702 + 21120 +	y C ,	sandwiched by a			
			solid-state			
			electrolyte			
Polysulphide-	$Br^{-} \perp 2\rho^{-} \bigtriangleup 3Br^{-}$	$2S^{2} - 4S^{2} - \pm 2a^{-}$	(LISICON) Solid state	1 55	≈50	
polybromine	DI 3 2e (75DI	25 (75 ₄ 12e	electrolyte	1.55		
, ,			, (NASICON			
Polysulphide-	$3I^- \leftrightarrow I_3^- + 2e^-$	$S_2^2^- + 2e^- \leftrightarrow 2S^2^-$	(Na ₃ Zr ₂ Si ₂ PO ₁₂) and		80	28
polyiodide	0	-	LATP (Li _{1+x+y} Al _x Ti ₂₋	1.05		
			_x P _{3-y} Si _y O ₁₂)			
Br-V	$Br_2 + 2e^- \leftrightarrow 2Br^-$	$V^2^+ \leftrightarrow V^{3+} + e^-$	3.5M V in 7M HBr +	1.30	-	29
			2M HCI/ 2M V in			
Mp_V	$Mm^{2} + 1 a^{-} (Mm^{3} + 1)$	$V^{2} + V^{3} + L^{2}$	4 IVI H ₂ SU ₄ 0 3 M V^{3+} in 5 M	1 77	63	30
IVIII-V	$Mn + e \leftrightarrow Mn$	$V \leftrightarrow V + e$	$H_{2}SO_{4}/O_{2}SM_{2}M_{2}M_{2}$	1.//	05	50
			in 5M H ₂ SO ₄			
		Lead-based	- 2- 4			
Pb-Ce	$2Ce^{3+} \leftrightarrow 2Ce^{4+} + 2e$	$Pb^{2+} + 2e^{-} \leftrightarrow Pb$	1.5MPb ^{II} methanes	1.7	83	31
			ulfonate in 1.0 M			
			MSA (Negative);			
			1.0MCe ^{III} methanes			
			ulfonate in 1.0M			
Salubla Dh	$p_k^2 + 120 + 2a^-$	$Dh^2 + Da^- + Dh$	IVISA (Positive)	1 70	6F	22
Soluble-PD	$PD + 2H_2O + 2e$	$PD + 2e \leftrightarrow PD$	methanesulfonic	1.70	05	52
			acid			
		Polyoxometalate (POM)-based			
All-POM	SiV ^V ₃ W ^{VI} ₉ O ₄₀ ⁷⁻ /	SiV ^{IV} ₃ W ^{VI} ₉ O ₄₀ ¹⁰⁻	Tungsten based	1.0	50	33
(Symmetric	SiV ^{IV} ₃ W ^{VI} ₉ O ₄₀ ¹⁰⁻	/SiV ^{IV} ₃ W ^V ₃ W ^{VI} ₆ O ₄₀	Keggin POM K ₆ H[A-			
POM-based)	2	¹³⁻)	α -SiV ₃ W ₉ O ₄₀] (ASi)			
Vanadium,	$PV_3W_9O_{40}^{9-} \leftrightarrow PV_3W_9O_{40}^{9-}$	$PV_3W_9O_{40}^{9-} + 3e^- \leftrightarrow P$	⁴ A-α-PV ₃ W ₉ O ₄₀ ⁶⁻ , B-	>2	-	34
tungsten,			α -PV ₃ W ₉ O ₄₀ ⁶⁻ , and			

phosphorus- based POM			$P_2V_3W_{15}O_{62}^{9-1}$			
All Tungsto- cobalt-POM	$Co^{II}W_{12}O^{6-}_{40}\leftrightarrow Co^{III}W$	$CoW_{12}O_{40}^{6-} + 2e^{-} + 2e^{-}$	tungsten-cobalt heteropoly acid	-	86	35
			(H6[CoW12O40])			
Asymmetric	$2Br^- \leftrightarrow Br_2 + 2e^-$	$[P_2W_{18}O_{62}]^{6-} + 2e^{-}$	$Li_6[P_2W_{18}O_{62}]$	-	76	36
POM-based			(Negative) HBr/Br ₂			
			(Positive)			
PTA-POM	$3I^{-} - 2e^{-} \leftrightarrow I_{3}^{-}$	$[PW_{12}O_{40}]^{5} + 2e^{-1}$	1.6 M HI 0.25 M	0.84	80.1	37
based	Ū.		PTA (Positive) , 12-			
			1.1 M HI 0.25 M			
			PTA (Negative)			
Polyoxovana	$[PV_{14}O_{42}]^{9-} \leftrightarrow [H_{\chi}PV$	$[SiW_{12}O_{40}] + 4e^- \leftrightarrow [$	$[SiW_{12}O_{40}]^{4-}$ (SiW		-	38
uale -POIVI			₁₂)(Negative)			
Daseu			PV ₁₄ (Positive)			

Table S2 Cell performance of organic-based ARFBs

Туре	Positive	Negative	Electrolyte	E _{Cell} (V)	EE (%)	Ref
		Viologen-base	d			
Methyl viologen-based	4 – <i>OH – TEMPO</i> ↔[$MVi^{2+} + e^{-} \leftrightarrow MVi^{+}$	³ M in 1.5M NaCl methyl viologen (anolyte) 4- hydroxy-2,2,6,6- tetramethylpiperidin-1-oxyl (Catholyte)	1.25	62.5	39
Ferrocene- based	$[FcN]^+ \leftrightarrow [FcN]^{2+}$	- [(Me)(NPr)V] ³⁺ + 6	 A 1.3M in 2M NaCl 1,10-bis[3- (trimethylammonio) propyl]4,40-bipyridinium tetrabromide (Anolyte) BTMAP-Fc (Catholyte) 	0.75	≈65	40
Viologen/Br ₂	$Br_2 + 2e^- \leftrightarrow 2Br^-$	(2HO-V) ^{2+/1+} and (2HO-V) ^{1+/0}	2M in H_2O (2HO-V)Br ₂ (anolyte) and KBr-MEP (Catholyte)	1.49 and 1.89	80	41
Viologen- Thiazolo	[N ^{Me} TEMPO] ⁺ ↔[N	$I\left[\left(NPr\right)_2 TTz\right]^{4+} + e^{-T}$	$^{-1.1}$ M in 2M NaCl [(NPr) ₂ TTz]Cl ₄ (anolyte) N ^{Me} TEMPO (catholyte)	1.44	70	42
Viologen- Ferrocene	-	$4MV^{\cdot +} + O_2 + 2H_2O$	((3- trimethylammonio)propyl)- ferrocene dichloride (catholyte) bis(3- trimethylammonio)propyl viologen tetrachloride (Anolyte)	0.748	-	43

Sulphonate viologen-KI	$I_3^- + 2e^- \leftrightarrow 3I^-$	$(SPr_2)V + e^- \leftrightarrow [(SPr_2)V + e^-]$	2M in H_2O (SPr) ₂ V (an KI (Catholyte)	olyte)	1.0	67	44
Sulphonate viologen-Br	$Br_2 + 2e^- \leftrightarrow 2Br^-$	$(SPr_2)V + e^- \leftrightarrow [(SPr_2)V + e^-]$	(SPr) ₂ V (anolyte) (catholyte)	NH₄Br	1.51	80	45
Poly viologen	TEMP0↔TEMP0 ⁺	$Viol^{++} + e^- \leftrightarrow Viol^{++}$	PolyVi (anolyte) PolyTi (Catholyte)	EMPO	1.19	75	46
		TEMPO-based					
TEMPO- Viologen	4 – OH – TEMPO⇔[$MVi^{2+} + e^{-} \leftrightarrow MVi^{+}$	3M in 1.5M NaCl n viologen (anolyte) hydroxy-2,2,6,6- tetramethylpiperidin-2 (Catholyte)	nethyl 4- 1-oxyl	1.25	62.5	39
N ^{Me} -TEMPO based	TEMPO ^{+.} ↔TEMPO	Viol ⁺⁺ + e ⁻ ↔Viol ⁺	N,N,N-2,2,6,6-heptam piperi-dinyloxy-4- ammoniumchloride (TEMPTMA) (Cath Viologen derivative N,N'-dimethyl-4,4- bipyridiniumdichloride (MV)	ethyl oolyte) e	1.4	70	47
GTMA⁺ grafted 4-OH-TEMPO	g ⁺ - TEMPO ⁺ + e ⁻	$Zn^{2+} + 2e^{-} \leftrightarrow Zn$	(anolyte) $0.3M ZnCl_2+0.3MNH_4C$ (anolyte) $0.2M 4$ -hyd TEMPO in 1M (catholyte)	Cl droxy- NaCl	1.55	72.7	48
TEMPO-4- sulphate based	$R - TEMPO^{+} + e^{-} \leftarrow$ R=solubility promoting substituent	$Zn^{2+} + 2e^{-} \leftrightarrow Zn$	ZnCl ₂ +NH ₄ Cl (anolyte) Aqueous2,2,6,6- Tetramethyl piperidine-N-oxyl (catholyte)		1.5	-	49
TMAP-TEMPO	TMAP – TEMPO ⁺ +	$BTMAP^{++} + e^- \leftrightarrow B'_2$	TMAP-TEMPO (catholy BTMAP-Vi (anolyte)	yte)	1.5	60- 80	50
TEMPO- phenazine	p(TEMPO – co – zwi	$MV^{++} + e^- \leftrightarrow MV^{+}$	N,N'-dimethyl-4,4'- bipyridinium dich (MV) (anolyte) p(TE co-zwitterion)(catholy	lloride MPO- rte)	1.3	93	51
VIOTEMP	$TEMPO^+ + e^- \leftrightarrow TE$	$Viol^{++} + e^- \leftrightarrow Viol^{++}$	TEMPO (catholyte) Vic (anolyte)	ologen	1.16	-	52
TEMPO-polymer	$P1^+ + e^- \leftrightarrow P1$ P1=TEMPO contai - ning copolymer	$MV^{++} + e^- \leftrightarrow MV^{++}$	(2,2,6,6-Tetramethylp din-1-yl)oxyl-containin polymer(catholyte) dimethyl viologen (and	iperi ng olvte)	1.3	85	53
Poly(TEMPO) -Zinc	$TEMPO^+ + e^- \leftrightarrow TE$	$Zn^{2+} + 2e^{-} \leftrightarrow Zn$	ZnCl ₂ (anolyte)TEMPO- polymer(catholyte)	-	1.69	80	54
		Quinone-based	1				
Quinone-Br	$Br_2 + 2e^- + 2H^+ \leftrightarrow$	$AQDSH_2 \leftrightarrow AQDS + 2$	HBr/Br ₂ (catholyte) 9,10-anthraquinone-2	,7-	0.81	NA	55

Alkaline-	$Fe(III)(CN)^{3-} + 2e$	2.6 – reDHA0⇔2.6 –	disulphonicacid (AQDS)(anolyte) Fe(CN) ₆ 4-(Catholyte)2.6-	1.2	84	56
Quinone		_)~	dihydroxyanthraquinone (2,6-DHAQ)(anolyte)		_	
Naphtha- Quinone	$K_3Fe(III)(CN)_6 + e^{-2}$	2,3 – <i>reHCNQ</i> ↔2,3 –	2-hydroxy-3-carboxy-1,4- naphthoquinone(2,3- HCNQ)(anolyte)K ₄ Fe(CN) ₆ (catholyte)	1.02	68.8	57
Alkaline Benzoquinone	$K_3Fe(III)(CN)_6 + e^{-2}$	2,5 – <i>reDHBQ</i> ↔2,5 –	2,5-dihydroxy-1,4- benzoquinone (anolyte) K₄Fe(CN) ₆ (catholyte)	1.21	65	58
Ammonium anthraquinone	$I_3^- + 2e^- \leftrightarrow 3I^-$	$reAQDS(NH_4)_4 \leftrightarrow AQ_4$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.865	70	59
Alkaline- Quinone	$Fe(III)(CN)_{6}^{3-}+2e$	2,6 – <i>reDBEAQ</i> ↔2,6	Fe(CN) ₆ ⁴⁻ (Catholyte) 4,40-((9,10-anthraquinone- 2,6-diyl)dioxy)dibutyrate (2,6-DBEAQ) (anolyte)	1.05	88	60
Phosphonate- Functionalized Quinone	e(111)(CN) ³ ₆ + 2e ⁻	2,6 – <i>reDPPEAQ</i> ↔2,	((9,10-dioxo-9,10- dihydroanthracene-2,6- diyl)bis(oxy))bis(propane- 3,1-diyl))bis(phosphonic acid)(anolyte)K ₄ Fe(CN) ₆ K ₃ Fe(CN) ₆ (catholyte)	1.0	65	61
Water-Miscible Quinone	$e(III)(CN)_{6}^{3-}+2e^{-}$	rePEGAQ↔PEGAQ +	K_4 Fe(CN) ₆ K_3 Fe(CN) ₆ (catholyte) 1.5 M AQ-1,8- 3E-OH (anolyte)	1.0	NA	62
phenazine- based	$Fe(III)(CN)_{6}^{3-} + 2e$	$[Phenazine - R]^n + 2$	(7,8-dihydroxyphenazine-2- sulfonic acid)(anolyte) Fe(CN) ₆ ^{4-/3-} (Catholyte)	1.4	82	63
Fused-Ring Phenazine	$K_3Fe(III)(CN)_6 + e^{-2}$	-	benzo[a]hydroxyphenazine- 7/8-carboxylicacid (anolyte)K₄Fe(CN) ₆ (catholyte)	1.27	80	64
flavin mononucleotide	$Fe(CN)_{6}^{3-} + e^{-} \leftrightarrow Fe$	$FMN^{5-} + 2e^{-} \leftrightarrow FMI$	K ₄ Fe(CN) ₆ (catholyte) sodium salt of flavin mononucleotide (anolyte)	1.03	80	65
Phenothiazine- Based	$VO^{2+} \leftrightarrow VO_{2}^{+} + e^{-}$	$MB + 2e^- + 2H^+ \leftrightarrow H$	methylene blue (MB) (anolyte) V(II) (catholyte)	0.83	76	66

Table S3 Synthesis	strategies of	pristine MOFs
--------------------	---------------	---------------

MOFs	Synthesis method	Metal/Ligand/Solvent	Ref
MIL-53(Cr)	Hydrothermal method	Cr(NO ₃) ₃ .xH ₂ O/1,4-BDC/HF:H2O	67
Fe-MIL-88A	Ultrasound synthesis	FeCl ₃ .6H ₂ O/ fumaric acid	68
ZIF-8	Colloidal chemistry	Zn(NO ₃) ₂ ·6H ₂ O/2-methylimidazole/Methanol	69
MOF-5	Solvothermal	Zn(NO ₃) ₂ ·4H ₂ O/H ₂ BDC/DMF/chlorobenzene	70
Cr-MIL-101	Solvothermal	$Cr(NO_3)_3 \cdot 9H_2O/H_2BDC/H_2O$ (add 1M HF aq.)	71
Al-MIL-53-NH ₂	Solvothermal	AI(NO ₃) ₃ ·9H ₂ O/ H ₂ BDC-NH ₂ / DMF	72
UiO-66	Solvothermal	ZrCl ₄ /H ₂ BDC/DMF	73
Co-MOF-74	Microwave-assisted	Co(NO ₃) ₂ ·6H ₂ O/H ₂ DHBDC/DMF:EtOH:H ₂ O	74
HKUST-1	Microwave-assisted	$Cu(NO_3)_2$ ·3H ₂ O/ H ₃ BTC/ EtOH	75
Mg-MOF-74	Sonochemical	Mg(NO ₃)·6H ₂ O/ H ₄ DHBDC/ DMF: EtOH:H ₂ O	76
Al-MIL-100	electrochemical	AI(NO ₃) ₃ ·9H ₂ O/ H ₃ BTC/ H2O:EtOH	77
ZIF-4	mechanochemical	ZnO/ Him/DMF	78

Table S4 Compilation of some conducting MOFs and derivatives

MOFs	Condition	Conductivity/	Ref
{ $[Co(bny)(H_2O)_4](btec)_{0,5}, H_2O\}$	80°C and 98% RH	4 85 ×10 ⁻³	79
Ni ₂ (HITP) ₂	25°C	4×10 ⁻³	80
$[(CH_2)_2NH_2][ln(m-TTFTB)]$	70°C and 98% RH	4.05×10 ⁻³	81
Ni-CAT-1	25°C	3.2×10 ⁻²	82
$(NH_4)_2(adp)[Zn_2(ox)_3]\cdot 3H_2O$	25°C and 98% RH	8 ×10 ⁻³	83
BUT-8(Cr)A	80°C and 100% RH	1.27×10^{-1}	84
NNU-66a	180°C and anhydrous	1.94×10 ⁻³	85
MOF-74(Mg)–urea	25°C and 95% RH	2.64×10 ⁻²	86
MIP-202(Zr)	90°C and 95% RH	1.1×10 ⁻²	87
TMOF-2	90°C and 98% RH	1.23×10 ⁻⁴	88
Ni-HAB	65°C	45× 10 ⁻¹	89
β-PCMOF2	85°C and 90% RH	10-1	90
FeTHQ	27°C	3.3±0.55	91
[Co(DCDPP)]·5H₂O	80°C and 97% RH	3.9 × 10 ⁻²	92
Cu ₃ (HITP) ₂	25°C	0.2	93
{H[(N(CH ₃) ₄) ₂][Gd ₃ (NIPA) ₆]}3H ₂ O	75°C and 98% RH	7.17×10 ⁻²	94
MFM-300(Cr)·SO ₄ (H ₃ O) ₂	25°C and 99% RH	1.26×10 ⁻²	95
[Sr(DMPhH ₂ IDC) ₂]n	100°C and 98% RH	0.92×10 ⁻³	96
{[Cd(p-TIPhH ₂ IDC) ₂]·H ₂ O}n	100°C and 98% RH	1.24×10 ⁻⁴	96
Ni-PTC ([Ni ₃ (C ₂₄ S ₁₂)]n)	127°C	~10	97

References

1 A. Orita, M. G. Verde, M. Sakai, Y.S. Meng, A biomimetic redox flow battery based on flavin mononucleotide, *Nat. Commun.*, 2016, **7**, 1–8.

- 2 C. Wang, X. Li, B. Yu, Y. Wang, Z. Yang, H. Wang, H. Lin, J. Ma, G. Li, Z. Jin, Molecular Design of Fused-Ring Phenazine Derivatives for Long-Cycling Alkaline Redox Flow Batteries, *ACS Energy Lett.*, 2020, 411–417.
- 3 B. Huskinson, M. P. Marshak, C. Suh, S. Er, M.R. Gerhardt, C.J. Galvin, X. Chen, A. Aspuru-Guzik, R.G. Gordon, M.J. Aziz, A metal-free organic-inorganic aqueous flow battery, *Nature*, 2014, **505**, 195–198.
- J. Winsberg, T. Janoschka, S. Morgenstern, T. Hagemann, S. Muench, G. Hauffman, J.F. Gohy, M.D. Hager, U.S. Schubert, Poly(TEMPO)/Zinc Hybrid-Flow Battery: A Novel, "green," High Voltage, and Safe Energy Storage System, *Adv. Mater.*, 2016, 28, 2238–2243.
- 5 T. Hagemann, J. Winsberg, M. Grube, I. Nischang, T. Janoschka, N. Martin, M.D. Hager, U.S. Schubert, An aqueous all-organic redox-flow battery employing a (2,2,6,6tetramethylpiperidin-1-yl)oxyl-containing polymer as catholyte and dimethyl viologen dichloride as anolyte, *J. Power Sources.*, 2018, **378**, 546–554.
- 6 T. Janoschka, C. Friebe, M.D. Hager, N. Martin, U.S. Schubert, An Approach Toward Replacing Vanadium: A Single Organic Molecule for the Anode and Cathode of an Aqueous Redox-Flow Battery, *ChemistryOpen.*, 2017, **6**, 216–220.
- T. Hagemann, M. Strumpf, E. Schröter, C. Stolze, M. Grube, I. Nischang, M. D. Hager, U.
 S. Schubert, (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl-Containing Zwitterionic Polymer as Catholyte Species for High-Capacity Aqueous Polymer Redox Flow Batteries, *Chem. Mater.*, 2019, **31**, 7987–7999.
- Y. Liu, M. A. Goulet, L. Tong, Y. Liu, Y. Ji, L. Wu, R.G. Gordon, M. J. Aziz, Z. Yang, T. Xu, A Long-Lifetime All-Organic Aqueous Flow Battery Utilizing TMAP-TEMPO Radical, *Chem.*, 2019, 5, 1861–1870.
- J. Winsberg, C. Stolze, A. Schwenke, S. Muench, M. D. Hager, U. S. Schubert, Aqueous 2,2,6,6-Tetramethylpiperidine-N-oxyl Catholytes for a High-Capacity and High Current Density Oxygen-Insensitive Hybrid-Flow Battery, ACS Energy Lett., 2017, 2, 411–416.
- 10 Z. Chang, D. Henkensmeier, R. Chen, One-Step Cationic Grafting of 4-Hydroxy-TEMPO and its Application in a Hybrid Redox Flow Battery with a Crosslinked PBI Membrane, *ChemSusChem.*, 2017, **10**, 3193–3197.
- 11 T. Janoschka, N. Martin, M. D. Hager, U. S. Schubert, An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System, *Angew. Chemie Int. Ed.* 2016, **55**14427–14430.
- 12 T. Janoschka, N. Martin, U. Martin, C. Friebe, S. Morgenstern, H. Hiller, M.D. Hager, U.S. Schubert, An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials, *Nature*, 2015, **527**, 78–81.
- 13 A. Hollas, X. Wei, V. Murugesan, Z. Nie, B. Li, D. Reed, J. Liu, V. Sprenkle, W. Wang, A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries, *Nat. Energy*, 2018, **3**, 508–514.
- 14 J. Luo, W. Wu, C. Debruler, B. Hu, M. Hu, T. L. Liu, A 1.51 v pH neutral redox flow battery towards scalable energy storage, *J. Mater. Chem. A.*, 2019, **7**, 9130–9136.

- 15 C. Debruler, B. Hu, J. Moss, J. Luo, T. L. Liu, A Sulfonate-Functionalized Viologen Enabling Neutral Cation Exchange, Aqueous Organic Redox Flow Batteries toward Renewable Energy Storage, *ACS Energy Lett.*, 2018, **3**, 663–668.
- 16 E. S. Beh, D. De Porcellinis, R. L. Gracia, K. T. Xia, R.G. Gordon, M. J. Aziz, A neutral pH aqueous organic- organometallic redox flow battery with extremely high capacity retention, *ACS Energy Lett.*, 2017, **2**, 639–644.
- J. Luo, B. Hu, C. Debruler, T. L. Liu, A π-Conjugation extended viologen as a two-electron storage anolyte for total organic aqueous redox flow batteries, *Angew. Chemie.* 2018, 130, 237–241.
- 18 W. Liu, Y. Liu, H. Zhang, C. Xie, L. Shi, Y.G. Zhou, X. Li, A highly stable neutral viologen/bromine aqueous flow battery with high energy and power density, *Chem. Commun.* 2019, **55**, 4801–4804.
- 19 T. Liu, X. Wei, Z. Nie, V. Sprenkle, W. Wang, A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte, *Adv. Energy Mater.*, 2016, **6**).
- J. Friedl, M. V. Holland-Cunz, F. Cording, F. L. Pfanschilling, C. Wills, W. McFarlane, B. Schricker, R. Fleck, H. Wolfschmidt, U. Stimming, Asymmetric polyoxometalate electrolytes for advanced redox flow batteries, *Energy Environ. Sci.*, 2018, **11**, 3010–3018.
- 21 T. Feng, H. Wang, Y. Liu, J. Zhang, Y. Xiang, S. Lu, A redox flow battery with high capacity retention using 12-phosphotungstic acid/iodine mixed solution as electrolytes, *J. Power Sources*, 2019, **436**.
- J. J. Chen, M. D. Symes, L. Cronin, Highly reduced and protonated aqueous solutions of [P₂W₁₈O₆₂]⁶⁻ for on-demand hydrogen generation and energy storage, *Nat. Chem.*, 2018, **10**, 1042–1047.
- 23 Y. Liu, H. Wang, Y. Xiang, S. Lu, The effect of Nafion membrane thickness on performance of all tungsten-cobalt heteropoly acid redox flow battery, *J. Power Sources.*, 2018, **392**, 60–264.
- S. Jin, Y. Jing, D. G. Kwabi, Y. Ji, L. Tong, D. De Porcellinis, M. A. Goulet, D. A. Pollack, R. G. Gordon, M. J. Aziz, A water-miscible quinone flow battery with high volumetric capacity and energy density, ACS Energy Lett., 2019, 4, 1342–1348.
- 25 C. DeBruler, B. Hu, J. Moss, X. Liu, J. Luo, Y. Sun, T.L. Liu, Designer two-electron storage viologen anolyte materials for neutral aqueous organic redox flow batteries, *Chem.*, 2017, **3**, 961–978.
- 26 H. D. Pratt, T. M. Anderson, Mixed addenda polyoxometalate "solutions" for stationary energy storage, *Dalt. Trans.*, 2013, **42**, 15650–15655.
- 27 H. D. Pratt, N. S. Hudak, X. Fang, T. M. Anderson, Short communication A polyoxometalate flow battery, *J. Power Sources.*, 2013, **236**, 259–264.
- 28 D. Pletcher, R. Wills, A novel flow battery A lead acid battery based on an electrolyte with soluble lead(II): III. The influence of conditions on battery performance, *J. Power*

Sources, 2005, 149, 96-102.

- 29 Z. Na, S. Xu, D. Yin, L. Wang, A cerium-lead redox flow battery system employing supporting electrolyte of methanesulfonic acid, *J. Power Sources*, 2015, **295**, 28–32.
- 30 F. Q. Xue, Y. L. Wang, W. H. Wang, X. D. Wang, Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery, *Electrochim. Acta.*, 2008, 53, 6636– 6642.
- 31 J. Sarkar, S. Bhattacharyya, Application of graphene and graphene-based materials in clean energy-related devices Minghui, *Arch. Thermodyn.*, 2012, **33**, 23–40.
- 32 M.M. Gross, A. Manthiram, Long-life polysulfide-polyhalide batteries with a mediatorion solid electrolyte, *ACS Appl. Energy Mater.*, 2019, **2**, 3445–3451.
- 33 Z. Li, M. S. Pan, L. Su, P. C. Tsai, A. F. Badel, J. M. Valle, S. L. Eiler, K. Xiang, F. R. Brushett, Y.M. Chiang, Air-breathing aqueous sulfur flow battery for ultralow-cost long-duration electrical storage, *Joule.*, 2017, 1, 306–327.
- 34 X. Wei, G. -G. Xia, B. Kirby, E. Thomsen, B. Li, Z. Nie, G.G. Graff, J. Liu, V. Sprenkle, W. Wang, An aqueous redox flow battery based on neutral alkali metal ferri/ferrocyanide and polysulfide electrolytes, *J. Electrochem. Soc.*, 2016, **163**, A5150–A5153.
- 35 Y. Ji, M.A. Goulet, D. A. Pollack, D. G. Kwabi, S. Jin, D. De Porcellinis, E. F. Kerr, R. G. Gordon, M. J. Aziz, A phosphonate-functionalized quinone redox flow battery at nearneutral pH with record capacity retention rate, *Adv. Energy Mater.*, 2019, **9**, 1–7.
- 36 N. Energy, *Nano Energy*, 2012, **30**, 711–712.
- 37 C. Ponce de León, A. Frías-Ferrer, J. González-García, D.A. Szánto, F.C. Walsh, Redox flow cells for energy conversion, *J. Power Sources.*, 2006, **160**, 716–732.
- 38 N. Arroyo-Currás, J. W. Hall, J. E. Dick, R. A. Jones, A. J. Bard, An alkaline flow battery based on the coordination chemistry of iron and cobalt, *J. Electrochem. Soc.*, 2015, **162**, A378–A383.
- 39 B. H. Robb, J. M. Farrell, M. P. Marshak, Chelated chromium electrolyte enabling highvoltage aqueous flow batteries, *Joule*, 2019, **3**, 2503–2512.
- 40 K. Gong, F. Xu, J. B. Grunewald, X. Ma, Y. Zhao, S. Gu, Y. Yan, All-soluble all-iron aqueous redox-flow battery, *ACS Energy Lett.*, 2016, **1**, 89–93.
- 41 W. Wang, S. Kim, B. Chen, Z. Nie, J. Zhang, G. G. Xia, L. Li, Z. Yang, A new redox flow battery using Fe/V redox couples in chloride supporting electrolyte, *Energy Environ. Sci.* 2011, **4**, 4068–4073.
- 42 M. Lopez-Atalaya, G. Codina, J. R. Perez, J. L. Vazquez, A. Aldaz, Optimization studies on a Fe/Cr redox flow battery, *J. Power Sources.*, 1992, **39**, 147–154.
- 43 S. Selverston, R. F. Savinell, J. S. Wainright, Zinc-iron flow batteries with common electrolyte, *J. Electrochem. Soc.*, 2017, **164**, A1069–A1075.
- 44 Z. Xie, Q. Su, A. Shi, B. Yang, B. Liu, J. Chen, X. Zhou, D. Cai, L. Yang, High performance of zinc-ferrum redox flow battery with Ac-/HAc buffer solution, *J. Energy Chem.*, 2016, **25**,

495–499.

- 45 C. Xie, Y. Duan, W. Xu, H. Zhang, X. Li, A low-cost neutral zinc—iron flow battery with high energy density for stationary energy storage, *Angew. Chemie Int. Ed.*, 2017, **56**, 14953–14957.
- 46 D. G. Kwabi, K. Lin, Y. Ji, E. F. Kerr, M. A. Goulet, D. De Porcellinis, D.P. Tabor, D.A. Pollack, A. Aspuru-Guzik, R. G. Gordon, M. J. Aziz, Alkaline quinone flow battery with long lifetime at pH 12, *Joule*, 2018, **2**, 1894–1906.
- K. Gong, X. Ma, K. M. Conforti, K. J. Kuttler, J. B. Grunewald, K. L. Yeager, M. Z. Bazant, S. Gu, Y. Yan, A zinc-iron redox-flow battery under \$100 per kW h of system capital cost, *Energy Environ. Sci.*, 2015, **8**, 2941–2945.
- 48 Z. Yuan, X. Liu, W. Xu, Y. Duan, H. Zhang, X. Li, Negatively charged nanoporous membrane for a dendrite-free alkaline zinc-based flow battery with long cycle life, *Nat. Commun.*, 2018, **9**, 1–11.
- 49 Z. Yuan, Y. Duan, T. Liu, H. Zhang, X. Li, Toward a low-cost alkaline zinc-iron flow battery with a polybenzimidazole custom membrane for stationary energy storage, *IScience*, 2018, **3**, 40–49.
- 50 J. Zhang, G. Jiang, P. Xu, A. Ghorbani Kashkooli, M. Mousavi, A. Yu, Z. Chen, An allaqueous redox flow battery with unprecedented energy density, *Energy Environ. Sci.*, 2018, **11**, 2010–2015.
- 51 F. C. Walsh, C. Poncedeléon, L. Berlouis, G. Nikiforidis, L.F. Arenas-Martínez, D. Hodgson, D. Hall, The development of Zn-Ce hybrid redox flow batteries for energy storage and their continuing challenges, *Chempluschem.*, 2015, **80**, 288–311.
- 52 G. M. Weng, Z. Li, G. Cong, Y. Zhou, Y.C. Lu, Unlocking the capacity of iodide for highenergy-density zinc/polyiodide and lithium/polyiodide redox flow batteries, *Energy Environ. Sci.*, 2017, **10**, 735–741.
- 53 C. Xie, H. Zhang, W. Xu, W. Wang, X. Li, A long cycle life, self-healing zinc–iodine flow battery with high power density, *Angew. Chemie.* 2018, **130**, 11341–11346.
- 54 C. Xie, Y. Liu, W. Lu, H. Zhang, X. Li, Highly stable zinc-iodine single flow batteries with super high energy density for stationary energy storage, *Energy Environ. Sci.* 2019, **12**, 1834–1839.
- 55 B. Li, Z. Nie, M. Vijayakumar, G. Li, J. Liu, V. Sprenkle, W. Wang, Ambipolar zincpolyiodide electrolyte for a high-energy density aqueous redox flow battery, *Nat. Commun.*, 2015, **6**.
- R. Kim, H. G. Kim, G. Doo, C. Choi, S. Kim, J. H. Lee, J. Heo, H. Y. Jung, H. T. Kim, Ultrathin Nafion-filled porous membrane for zinc/bromine redox flow batteries, *Sci. Rep.*, 2017, 7, 1–8.
- 57 B. Hu, J. Luo, M. Hu, B. Yuan, T.L. Liu, A pH-neutral, metal-free aqueous organic redox flow battery employing an ammonium anthraquinone anolyte, *Angew. Chemie.*, 2019, **131**, 16782–16789.

- 58 Y. Yin, S. Wang, Q. Zhang, Y. Song, N. Chang, Y. Pan, H. Zhang, X. Li, Dendrite-free zinc deposition induced by tin-modified multifunctional 3D host for stable zinc-based flow battery, *Adv. Mater.*, 2020, **32**, 1–8.
- 59 Q. Lai, H. Zhang, X. Li, L. Zhang, Y. Cheng, Short communication A novel single flow zincbromine battery with improved energy density, 2013, **235**, 2–5.
- 60 Z. Li, Y.C. Lu, Material Design of Aqueous Redox Flow Batteries: Fundamental Challenges and Mitigation Strategies, *Adv. Mater.* 2020, **32**, 1–30.
- 61 M. Skyllas-Kazacos, F. Grossmith, Efficient Vanadium Redox Flow Cell, *J. Electrochem. Soc.*, 1987, **134**, 2950–2953.
- 62 M. Rychcik, M. Skyllas-Kazacos, Characteristics of a new all-vanadium redox flow battery, *J. Power Sources.*, 1988, **22**, 59–67.
- 63 A. Orita, M.G. Verde, M. Sakai, Y.S. Meng, A biomimetic redox flow battery based on flavin mononucleotide, *Nat. Commun.*, 2016, **7**, 1–8.
- Z. Yang, L. Tong, D.P. Tabor, E.S. Beh, M.A. Goulet, D. De Porcellinis, A. Aspuru-Guzik,
 R.G. Gordon, M.J. Aziz, Alkaline Benzoquinone Aqueous Flow Battery for Large-Scale
 Storage of Electrical Energy, *Adv. Energy Mater.*, 2018, 8, 1–9.
- 65 C. Wang, Z. Yang, Y. Wang, P. Zhao, W. Yan, G. Zhu, L. Ma, B. Yu, L. Wang, G. Li, J. Liu, Z. Jin, High-Performance Alkaline Organic Redox Flow Batteries Based on 2-Hydroxy-3-carboxy-1,4-naphthoquinone, *ACS Energy Lett.*, 2018, **3**, 2404–2409.
- 66 K. Lin, Q. Chen, M.R. Gerhardt, L. Tong, S.B. Kim, L. Eisenach, A.W. Valle, D. Hardee, R.G. Gordon, M.J. Aziz, M.P. Marshak, Alkaline quinone flow battery, *Science*, 2015, 349, 1529–1532.
- F. Millange, C. Serre, Synthesis, structure determination and properties of MIL-53as and MIL-53ht : the first Cr III hybrid inorganic organic microporous solids : Cr III (OH) · { O 2 C − C 6 H 4 − CO 2 } · { HO 2 C − C 6 H 4 − CO 2 H } x ⁺, 2002, 822–823.
- T. Chalati, P. Horcajada, R. Gref, P. Couvreur, C. Serre, Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A, *J. Mater. Chem.*, 2011, **21**, 2220–2227.
- 69 J. Cravillon, S. Münzer, S.J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Rapid roomtemperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework, *Chem. Mater.*, 2009, **21**, 1410–1412.
- M. Eddaoudi, M. Eddaoudi, J. Kim, N. Rosi, O.M. Yaghi, Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage, 2012, 469.
- 71 J.T. Hupp, K.R. Poeppelmeler, Chemistry: Better living through nanopore chemistry, *Science*, 2005, **309**, 2008–2009.
- J. Kim, W.Y. Kim, W.S. Ahn, Amine-functionalized MIL-53(Al) for CO 2/N 2 separation: Effect of textural properties, *Fuel.*, 2012, 102, 574–579.
- 73 H.R. Abid, H. Tian, H.M. Ang, M.O. Tade, C.E. Buckley, S. Wang, Nanosize Zr-metal

organic framework (UiO-66) for hydrogen and carbon dioxide storage, *Chem. Eng. J.*, 2012, **187**, 415–420.

- H.Y. Cho, D.A. Yang, J. Kim, S.Y. Jeong, W.S. Ahn, CO 2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating, *Catal. Today.*, 2012, **185**, 35–40.
- 75 Y.K. Seo, G. Hundal, I.T. Jang, Y.K. Hwang, C.H. Jun, J.S. Chang, Microwave synthesis of hybrid inorganic-organic materials including porous Cu3(BTC)2 from Cu(II)-trimesate mixture, *Microporous Mesoporous Mater.*, 2009, 331–337.
- 76 D.A. Yang, H.Y. Cho, J. Kim, S.T. Yang, W.S. Ahn, CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method, *Energy Environ. Sci.*, 2012, 5, 6465– 6473.
- 77 A. Martinez Joaristi, J. Juan-Alcañiz, P. Serra-Crespo, F. Kapteijn, J. Gascon, Electrochemical synthesis of some archetypical Zn 2+, Cu 2+, and Al 3+ metal organic frameworks, *Cryst. Growth Des.*, 2012, **12**, 3489–3498.
- 78 P.J. Beldon, L. Fábián, R.S. Stein, A. Thirumurugan, A.K. Cheetham, T. Friščić, Rapid Room-Temperature Synthesis of Zeolitic Imidazolate Frameworks by Using Mechanochemistry, *Angew. Chemie.*, 2010, **122**, 9834–9837.
- 79 S.M. Elahi, S. Chand, W. Deng, A. Pal, M.C. Das, Polycarboxylate-Templated Coordination Polymers: Role of Templates for Superprotonic Conductivities of up to 10 −1 S cm −1, *Angew. Chemie.*, 2018, **130**, 6772–6776.
- 80 D. Sheberla, L. Sun, M.A. Blood-forsythe, S. Er, C.R. Wade, C.K. Brozek, Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States, J. Am. Chem. Soc., 2014, 3, 2–5.
- 81 J. Su, W. He, X.M. Li, L. Sun, H.Y. Wang, Y.Q. Lan, M. Ding, J.L. Zuo, High Electrical Conductivity in a 2D MOF with Intrinsic Superprotonic Conduction and Interfacial Pseudo-capacitance, *Matter.*, 2020, 2, 711–722.
- A. Mahringer, A.C. Jakowetz, J.M. Rotter, B.J. Bohn, J.K. Stolarczyk, J. Feldmann, T. Bein,
 D.D. Medina, Oriented Thin Films of Electroactive Triphenylene Catecholate-Based
 Two-Dimensional MetalOrganic Frameworks, ACS Nano., 2019, 13, 6711–6719.
- 83 M. Sadakiyo, T. Yamada, H. Kitagawa, Rational designs for highly proton-conductive metal-organic frameworks, *J. Am. Chem. Soc.*, 2009, **131**, 9906–9907.
- 84 F. Yang, G. Xu, Y. Dou, B. Wang, H. Zhang, H. Wu, W. Zhou, J.R. Li, B. Chen, A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction, *Nat. Energy.*, 2017, **2**, 877–883.
- X.M. Li, L.Z. Dong, J. Liu, W.X. Ji, S.L. Li, Y.Q. Lan, Intermediate-Temperature Anhydrous High Proton Conductivity Triggered by Dynamic Molecular Migration in Trinuclear Cluster Lattice, *Chem.*, 2020, 6, 2272–2282. d
- 86 M.K. Sarango-Ramírez, D.W. Lim, D.I. Kolokolov, A.E. Khudozhitkov, A.G. Stepanov, H. Kitagawa, Superprotonic Conductivity in Metal-Organic Framework via Solvent-Free

Coordinative Urea Insertion, J. Am. Chem. Soc., 2020, 142, 6861–6865.

- 87 S. Wang, M. Wahiduzzaman, L. Davis, A. Tissot, W. Shepard, J. Marrot, C. Martineau-Corcos, D. Hamdane, G. Maurin, S. Devautour-Vinot, C. Serre, A robust zirconium amino acid metal-organic framework for proton conduction, *Nat. Commun.*, 2018, **9**, 1–8.
- G. Zhang, H. Fei, Missing metal-linker connectivities in a 3-D robust sulfonate-based metal-organic framework for enhanced proton conductivity, *Chem. Commun.*, 2017, 53, 4156–4159.
- D. Feng, T. Lei, M.R. Lukatskaya, J. Park, Z. Huang, M. Lee, L. Shaw, S. Chen, A.A. Yakovenko, A. Kulkarni, J. Xiao, K. Fredrickson, J.B. Tok, X. Zou, Y. Cui, Z. Bao, Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance, *Nat. Energy.*, 2018, **3**, 30–36.
- 90 S. Kim, B. Joarder, J.A. Hurd, J. Zhang, K.W. Dawson, B.S. Gelfand, N.E. Wong, G.K.H. Shimizu, Achieving Superprotonic Conduction in Metal-Organic Frameworks through Iterative Design Advances, J. Am. Chem. Soc., 2018, **140**, 1077–1082.
- 91 G. Chen, L.B. Gee, W. Xu, Y. Zhu, J.S. Lezama-Pacheco, Z. Huang, Z. Li, J.T. Babicz, S. Choudhury, T.H. Chang, E. Reed, E.I. Solomon, Z. Bao, Valence-Dependent Electrical Conductivity in a 3D Tetrahydroxyquinone-Based Metal-Organic Framework, J. Am. Chem. Soc., 2020, 142, 21243–21248.
- 92 H. Wu, F. Yang, X.L. Lv, B. Wang, Y.Z. Zhang, M.J. Zhao, J.R. Li, A stable porphyrinic metal-organic framework pore-functionalized by high-density carboxylic groups for proton conduction, *J. Mater. Chem. A.*, 2017, **5**, 14525–14529.
- 93 M.G. Campbell, D. Sheberla, S.F. Liu, T.M. Swager, M. Dincə, Cu3(hexaiminotriphenylene)2: An electrically conductive 2D metal-organic framework for chemiresistive sensing, *Angew. Chemie Int. Ed.*, 2015, **54**, 4349–4352.
- X.S. Xing, Z.H. Fu, N.N. Zhang, X.Q. Yu, M.S. Wang, G.C. Guo, High proton conduction in an excellent water-stable gadolinium metal-organic framework, *Chem. Commun.*, 2019, 55, 1241–1244.
- J. Chen, Q. Mei, Y. Chen, C. Marsh, B. An, X. Han, I.P. Silverwood, M. Li, Y. Cheng, M. He, X. Chen, W. Li, M. Kippax-jones, D. Crawshaw, M.D. Frogley, S.J. Day, V. Garc, P. Manuel, A.J. Ramirez-cuesta, S. Yang, M.S. Der, Highly E ffi cient Proton Conduction in the Metal Organic Framework Material MFM-300(Cr) · SO 4 (H 3 O) 2, 300 (2022).
- 96 X. Xie, Z. Zhang, J. Zhang, L. Hou, Z. Li, G. Li, Impressive Proton Conductivities of Two Highly Stable Metal-Organic Frameworks Constructed by Substituted Imidazoledicarboxylates, *Inorg. Chem.*, 2019, **58**, 5173–5182.
- 97 Z. Chen, Y. Cui, Y. Jin, L. Liu, J. Yan, Y. Sun, Y. Zou, Y. Sun, W. Xu, D. Zhu, Nanorods of a novel highly conductive 2D metal-organic framework based on perthiolated coronene for thermoelectric conversion, *J. Mater. Chem. C.*, 2020, **8**, 8199–8205.