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1. Experimental Section

1.1 Materials

Chloroplatinic Acid (H,PtCls) (GR), ethylenediamine (EDA) (GC) were
purchased from Aladdin Chemistry Co. Ltd. (Shanghai, China). Citric acid
monohydrate (CA) (AR) was purchased from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). Dicyandiamide (AR) and methanol
(AR) were bought from Shanghai Lingfeng Chemical Reagent Co., Ltd.
(Shanghai, China). All the chemicals were used directly without another

purification treatment.

1.2 Synthesis of NCQDs

CA and EDA were used as carbon source and nitrogen dopant
respectively to synthesize the NCQDs via a common microwave pyrolysis
method. Typically, 20 g CA and 3 mL EDA were dissolved in 100 mL
deionized water, then heated in a domestic microwave oven (Midea, M1-
211A) for 10 min under the power of 700 W. After cooling to room
temperature, the crude product was mixed with 75 mL deionized water,
then filtered through a 0.22 um membrane filter to remove the large
particles. The filtered solution was further dialyzed using a membrane of
MWCO of 1 kD for 12 h against deionized water. Finally, a pure and
yellow NCQDs was obtained by lyophilizing.

1.3 Preparation of the Catalysts

1.3.1 Preparation of the Pt/NCQDs,/CN
A facile thermal polymerization was used to synthesize NCQDs

modified hybrid nitride carbon. First, 20 g NCQDs solid was dissolved in



100 mL deionized water to make a solution with 20 wt.% NCQDs. After
that, 5 g dicyandiamide was dissolved in 20 mL solution which contains x
mL NCQDs (x = 0,3,5,10,20 mL), keeping stirring for 3 h. The resultant
solution was dried at 90 °C to collect light yellow powder, labeled as
NCQDs-DICY. Finally, the dark hybrid nitride carbon support mixed with
different content of NCQDs, denoted as NCQDs,/CN, was obtained by
calcining the precursor powder under nitrogen atmosphere at 550 °C for 3
h with a heating rate of 2.8 °C-min’!. The pristine CN was prepared by the
same process without the addition of NCQDs, and thus is consistent with

NCQDso/CN.

In addition, 10 mL NCQDs (20 wt.%) was dried at 90 °C to collect
light yellow powder, and the powder was calcined under nitrogen
atmosphere at 550 °C for 3 h with a heating rate 0f2.8 °C-min™!, the product
was named as NCQDs,,. After that, the NCQDs., and 5 g dicyandiamide
were added to 20 mL deionized water, keeping stirring for 3 h. The
resultant solution was dried at 90 °C to obtain a powder labeled as
NCQDs,-DICY, the obtained product was calcined at 550 °C for 3 h with
a heating rate of 2.8 °C'min™! in a tube furnace with nitrogen atmosphere

to synthesis NCQDs./CN.

After that, 0.5 g NCQDs,/CN and 1.0 mL chloroplatinic acid solution
(0.0086 g/mL) were added to 85 mL deionized water. After stirring for 3
h, the solution was transferred into a Teflon lined stainless hydrothermal
reactor and heated for 10 h at 180 °C. The products were dried under 70 °C
for 3 h in a vacuum oven, labeled as Pt/NCQDs,/CN.

1.3.2 Preparation of the Pt/NCQDs and Pt/NCQDs-CN

0.5 g product, obtained by the calcination of 2 g NCQDs at 550 °C
under N, for 3 h with a heating rate of 2.8 °C'min’!, and 1.0 mL



chloroplatinic acid solution (0.0086 g/mL) were added to 85 mL deionized
water. After stirring for 8 h, the solution was transferred into a Teflon lined
stainless hydrothermal reactor and heated for 10 h at 180 °C. The products
were dried under 70 °C for 3 h in a vacuum oven, labeled as Pt/NCQDs.

For Pt/NCQDs-CN, 0.5 g product, obtained by the calcination of 2 g
NCQDs at 550 °C for 3 h with a heating rate of 2.8 °C-min™!, was physically
mixed pristine CN at a ratio of 1:1 to prepare NCQDs-CN. The process of

metal growth was the same as above, while the carbon support is replaced

with NCQDs-CN.

1.3.3 Preparation of the Pt/CN-RM

To clarify the necessity of NCQDs rather than small molecules in
catalysis, mixed equal amount raw materials of NCQDs;¢/CN to prepare
the precursor of CN-RM. Specifically, 4 g CA, 0.6 mL EDA and 5 g
dicyandiamide were dissolved in 20 mL deionized water and evaporated at
90 °C after homogenized. After that, the product was heated to 550 °C at a
heating rate of 2.8 °C-min’! and kept for 3 h under nitrogen atmosphere.
Meanwhile, replaced NCQDs,/CN with CN-RM and kept other steps
consistent to prepare Pt/CN-RM.

1.4 Characterization

The TEM images were obtained by a transmission electron microscope
(JEM-F200, 300 kV), while the features and morphologies were performed
via scanning electron microscopy (SEM, SU8100). To prove the well
UV—vis response of NCQDs, the UV—vis absorption spectrum of NCQDs
was studied via a GENESY 150 Spectrophotometer of ThermoFisher,
however, the UV-vis diffuse reflectance spectra of catalysts were collected

by UV-2600i of Shimadzu. The crystal structures of catalysts were



analyzed on a ThermoFisher ARL SCINTAG XTRA X-ray powder
diffractometer using a Cu Ka radiation source at 45 kV and 40 mA. The
functional groups of samples were carried out by Nicolet 6700 FT-IR
spectrometer with KBr pellets. The Brunauer—Emmett-Teller (BET)
specific surface and porous parameters of catalysts were performed by N,
adsorption-desorption on a Micromeritics ASAP 2020 instrument. The
defect degree of catalysts was detected by Raman on Horiba LabRAM
Odyssey equipped with a laser of 532 nm. X-ray photoelectron
spectroscopy (XPS) and Ultraviolet photoelectron spectroscopy (UPS)
were recorded on Thermo Scientific ESCALAB 250Xi with
monochromatized aluminum X-ray source (1486.6 ¢V) using the C 1s peak
at 284.8 eV as a standard to correct the other peaks. The samples were
purged with dry Ar (50 mL/min, purity> 99.999%) at 120 °C for 2.0 h to
remove the adsorbed water, and then the H,-TPR-MS was performed in the
range of 50~800 °C at a rate of 10 °C/min during the H,/Ar atmosphere.
The captured mass signals were characterized according to the mass-
charge on a quadrupole mass spectrometer. The PL emission spectra were
performed with 375 nm light source at Edinburgh FLS1000. The actual Pt
content in the sample was analyzed using the air-acetylene flame atomic
absorption spectrophotometer (AAS) on a Beijing Purkinje TAS-990

atomic absorption spectrophotometer.

1.5 Computational methods

The DFT models and computations were constructed and performed
through the Materials Studio software. The exchange dependent functional
were described by the functional Perdew-Burke-Ernzerhof (PBE)
generalized gradient approximation (GGA). The plane-wave cut-off

energy was set as 400 eV. The SCF tolerance of 1x107° eV/atom was used



to calculate the total energy and the electron to obtain well-converged
convergent geometry. The sampling of the Brillioun zone was done using
a 2x2x2 k-points for geometry optimizations and the projected density of
states (PDOS) calculations. All the models were built a periodic supercell
containing a vacuum of 15 A in the z-direction. In addition, the adsorption

energy (Eag) 18 obtained by the formula:E, 45 = Eqgsorbate/substrate —

(Eadsorbate + Esubstrate)

1.6 Formula description

Formula 1:

wt. %/M,

wt.%/M, + (100 —wt.%)/us

at. %: This term refers to the percentage of atoms of a specific element relative to
the total number of atoms in a material;

wt. %: This term refers to the percentage of the mass of a specific element relative
to the total mass of the material;

Ma: the atomic weights of element A;

Mg: the atomic weights of element B.

at.% = (

) x 100

Formula 2:

(ahv)*™ = B(hv — E,)

a: the absorption coefficient;
hv: the photon energy;
h: Planck's constant, is around 4.13567*%10"5¢V -s;

v: the photon frequency, v = %, where c is the speed of light, A is the wavelength

of the incident light;

B: the proportionality constant;

E,: the band gap width of the semiconductor material;

The value of n is related to the type of semiconductor material, when the
semiconductor material is a direct band gap, n=1/2; When the semiconductor material
is an indirect band gap, n=2.

Formula 3:

EVB = ECB + Eg
Evs: the valence band value of semiconductor material;



Ecg: the conduction band value of semiconductor material;
E,: the band gap width of the semiconductor material.

Formula 4:

@ = hv — Ecyrorf
®: the work function;
hv: the photon energy;
h: Planck's constant, is around 4.13567*%107%eV s;

v: the photon frequency, v = %, where c is the speed of light, A is the wavelength

of the incident light;

Ecutoff: the cutoff energy, which threshold required for electrons to escape from
the surface of a solid (usually a metal).

2. Supplementary Figures
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Fig. S1 Particle size distribution of NCQDs.
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Fig. S18 Proposed configuration of CN.



Fig. S19 Formation energies for different configurations of Pt/CN.
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3. Supplementary Tables

Table S1. Atom and corresponding species ratio of NCQDs calculated by XPS

Atoms Species (%) Atom ratio

C-C/C=C 49.45%

C C-N 21.48% 62.85%
C=0/C-0 29.07%
Pyridinic N 10.97%

N Pyrrolic N 74.78% 10.65%
Graphitic N 14.25%
Cc=0 79.69%

O 26.5%
C-O0 20.31%

S34



Table S2. Atom and corresponding species ratio of Pt/NCQDs,/CN catalysts calculated by XPS

Pt/CN Pt/NCQDs3/CN  Pt/NCQDss/CN  Pt/NCQDs1o/CN  Pt/NCQDs20/CN

Atoms Species
(%) (%) (%) (%) (%)
C-C/Cc=C 29.24 33.18 36.8 42.14 43.33
C C-0/C=0 0 21.49 24.02 23.58 26.66
N-C=N 70.76 45.33 39.17 34.28 30.01
Pyridinic N 69.59 44.63 51.48 33.62 31.76
Pyrrolic N 0 31.34 26.76 57.28 57.16
Graphitic N 28.98 21.99 18.53 5.96 3.64
N-H 1.44 2.04 3.23 3.14 7.43
Pt° 0 3.77 4.54 72.3 72.18
Pt Pt** 66.39 96.23 95.46 27.7 27.82
Pt** 33.61 0 0 0 0
Cc=0 66.82 69.46 63.4 63.33 64.91
© Cc-O0 33.18 30.54 36.6 36.67 35.19

S35



Table S3. Binding energy of Pt/NCQDs,/CN catalysts calculated by XPS

) Pt/CN  Pt/NCQDs3/CN Pt/NCQDss/CN  Pt/NCQDsio/CN  Pt/NCQDs2/CN
Atoms Species
(eV) (eV) (eV) (eV) (eV)
C-C/C=C 284.8 284.8 284.82 284.83 284.83
C C-0/C=0 286.29 286.12 286.42 286.32
N-C=N 288.08 287.85 287.85 287.95 287.83
Pyridinic N 398.26 398.28 398.28 398.36 398.37
Pyrrolic N / 398.87 399.11 399.41 399.36
Graphitic N 399.8 400.00 400.18 400.29 400.37
N-H 401.21 401.28 401.24 401.22 401.5
pt° / 70.88/74.05 70.38/74.07 70.92/74.32 70.73/74.12
72.85/
P2 72.74/76.04 72.65/75.95 72.63/75.91 72.68/76.03
Pt 76.14
74.45/
P+ / / / /
77.81
o C=0 531.44 531.24 531.17 531.14 531.19
C-0 532.63 532.61 532.67 532.61 532.61
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Table S4. The catalytic performance of catalysts for the hydrogenation of p-CNBI?!

Reaction time

Reaction rate!®

Entry Catalyst (min) (mol,.cxg/h-molr) Conv. (%) Sel. (%)

1 Pt/CN 45 94.1 14.13 71.6
2 Pt/CN-RM 45 80.7 12.51 76.5
3 Pt/NCQDs 45 176.8 36.21 54.6
4 Pt/NCQDs-CN 45 166.8 34.17 64.3
5 Pt/NCQDs3/CN 45 232.1 39.65 74.9
6 Pt/NCQDss/CN 45 474.6 79.92 93.7
7 Pt/NCQDs1o/CN 45 497.3 100 99.9
8 Pt/NCQDs0/CN 45 310.2 62 84

[a] Reaction conditions: 0.01 g catalyst, 0.5 g p-CNB, 25 mL methanol, T=40 °C, 1 MPa H..

[b] Reaction rate: moles of converted p-CNB per mole of Pt per hour.
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Table S5. Comparison of the catalytic performance for the hydrogenation of p-CNB to p-CAN in

literatures.

Catalyst Weat(g) Mp-CNB - ipa ReActonme V. (%) Sel. (%) Ref
Y cat(iNg (mmol) (min) . (70 . (7 .
This
Pt/NCQDs10o/CN 10 3.17 1 45 100 99.9
work
5%Pt/CMK-3 25 21 4 5 100 56.8 [1]
PYMIL-101 50 21 4 10 99.8 773 2]
3%Pt/CeO> 23.9 mg Pt 0.8 1 15 99.1 86.9 [3]
Pty/mpg-C3Ny 0.07 mg Pt | 1 180 99 93 [4]
Pd@Pt-1/1/AL03 100 12.6 0.1 180 88 86.9 [5]
Pt-NiO@mSiO» 179 3.8 1 atm 120 87.9 95.3 [6]
Pt/Ni1O/Al,03 200 63 3 120 79.8 89.91 [7]
Pt/T1i:C,Tx-AB 5 1 1 60 70.3 89.9 [8]
PVP-La—Pt 1.1 mg Pt 4 0.1 725 63 72.3 9]
PtCu/CNTs 150 4 0.1 240 57.4 92.3 [10]
Pt0.0002—A10.005/ T102 25 2.5 1 30 55.2 97.3 [11]
Pto.o/SMC 10 0.5 1 atm 150 51.6 70.5 [12]
Pt/Si0, 10 0.6 0.1 60 40.4 55.2 [13]
0.3% Pt/AC 20 6.3 1 40 37 83 [14]
Pt(1.10%)/TAPT-COF 10 0.5 H> balloon 180 36.6 94 .4 [15]
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