Supporting Information

Electronic and Structural Programming via Electrochemical Dealloying to Generate Bi-Pb Electrocatalysts for CO₂ Reduction to Formate

Samina Farid,*^a Ashi Rashid^{a,b} Khurram Saleem Joya^{*a,c} and Farhat Yasmeen^a

^aDepartment of Chemistry, University of Engineering and Technology, GT Road 54890 Lahore, Pakistan,

^bUniversity of Leeds, Leeds, LS2 9JT, UK

^cDepartment of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Aarabia

*Emails: (SF) samina.farid117@gmail.com; (KSJ) khurram.joya@gmail.com

Materials and Chemicals

Bi, Pb, and Sn foil (99.99%, 0.2 mm thickness) of analytical grade were obtained from Sigma-Aldrich. All the chemicals were used without any further purification. HCl (99.98%), HNO₃ (99.98%) H₂SO₄ (99.98%) KHCO₃ (99.99%), C₂H₅OH (99.99%), (CH₃)₂CO (99.99%), NaCOOH (99.99%) were purchased from Sigma-Aldrich. CO₂ gas (99.998% purity) was obtained from reputed gas company, Lahore, Pakistan.

ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy) analysis

The bulk elemental content and composition (Pb, Bi, Sn) of prepared samples were determined using ICP-OES. For sample preparation, alloy foil crushed into fine powder using a mechanical grinder. The concentrated solution was prepared by dissolving metals in concentrated HNO₃ by constantly heating until all the particles completely dissolved. After that solution was diluted with ultrapure water to a suitable volume for ICP-OES analysis. The certified reference material of Pb, Bi, Sn was prepared for standard calibration at various concentrations (1ppm, 5ppm, 10ppm, 20ppm). The weight percentage (wt/%) was calculated from ppm concentration using dilution factor and mass of sample (mg). Here's the formula:

 $(Weight percentage (wt/\%)) = \frac{concentraton (ppm) \times Dlution Factor}{Sample mass (mg)} \times 100$ (1)

Synthesis of electrodes

Figure S1. Preparation of electrodes using dealloying/etching method (a) Cyclic voltammogram of Bi₅₀Pb₄₀Sn₁₀ alloy foil obtained in 1 M H₂SO₄ (b) chronoamperometric grpah of Bi₅₀Pb₄₀Sn₁₀ alloy foil taken in 1 M H₂SO₄ at controlled potential of 0.3 V (*vs.* Ag/AgCl). (c) Cyclic voltammogram of Bi₅₀Pb₄₀Sn₁₀ alloy foil obtained in 1 M HCl (d) chronoamperometric grpah of Bi₅₀Pb₄₀Sn₁₀ alloy foil taken in 1 M H₂SO₄ at controlled potential of 0.2 V (*vs.* Ag/AgCl).

Mechanism of Sn and Pb Dissolution in acidic environment Reaction mechanism

In an acidic medium (HCl, H₂SO₄), Sn oxidize to form Sn²⁺ ions.

$$\operatorname{Sn}(s) \to \operatorname{Sn}^{2+} + 2e \tag{1}$$

The electrons liberated in this oxidation are absorbed by H⁺ from HCl to produce hydrogen gas:

$$2\mathrm{H}^{+} + 2\mathrm{e}^{-} \to \mathrm{H}_{2}\uparrow \tag{2}$$

Overall reaction:

 $Sn(s) + 2H^+ \rightarrow Sn^{2+} + H_2$

The dissolution of Pb in H_2SO_4 undergo oxidation from Pb^0 to Pb^{2+} , as listed by the following reaction:

$$Pb(s) \rightarrow Pb^{2+} + 2e^{-} \tag{3}$$

Table S1. The contents of Pb, Bi, and Sn elements in Bi₅₀Pb₄₀Sn₁₀ alloy foil, Flaky Bi₆₀Pb₄₀, and web-like Bi₈₅Pb₁₅ were determined by ICP-OES, respectively.

Elemental content	Weight (%)				
	Bi	Pb	Sn		
Bi50Pb40Sn10	50.8	39.9	9.8		
Bi60Pb40,	59.0	41.6	-		
Bi85Pb ₁₅	85.7	16.3	-		

Figure S2. SEM mages of Bi50Pb40Sn10 alloy foil at various magnifications.

Figure S3. Overall XPS spectrum of Bi-Pb bimetalic alloy.

Figure S4. HPLC quantification of generated formic acid during CO₂ reduction reaction at different applied potentials.

Figure S5. (a) Standard of commercial sodium formate (b) standard calibration curve between commercial sodium formate and corresponding peak area of HPLC at various concentration (c) Standard of hydrogen gas generated during reaction (d) standard calibration curve at various concentration.

The partial current density are calculated fom formate faradic efficiency and geometric current density as given below.

$$J_{i} = J_{geometric} \mathbf{x} \mathbf{F}.\mathbf{E}$$
(2)

Potential (RHE)	Geometric current density (mA cm ⁻²)	FE _{CO} (%)	J _{HCOOH} (mA cm ⁻²)					
Web-like Bi85Pb15								
-0.6	3.33954	36	1.20					
-0.7	6.09741	55	3.35					
-0.8	9.10339	69.8	6.35					
-0.9	11.22437	81.3	9.12					
-1.0	15	96.5	14.4					
Flaky Bi60Pb40	1	I	I					
-0.6	2.60956	21	0.54					
-0.7	4.18091	39	1.63					
-0.8	7.12585	51	3.63					
-0.9	8.18176	67	5.48					
-1.0	9.43	83	7.82					
Bi50Pb40Sn10 alloy foil								
-0.6	1.41907	8	0.11					
-0.7	3.33954	16	0.53					
-0.8	4.62341	22	1.02					
-0.9	5.59082	35	1.96					
-1.0	6.09741	44	2.68					

Table S2. Calculation of J_{HCOOH} of Flaky Bi₆₀Pb₄₀, Web-like Bi₈₅Pb₁₅ and Bi₅₀Pb₄₀Sn₁₀ alloy foil at various appiled potentials from geometric current densities, FE_{HCOOH} respectively.

Figure S6. SEM images of prepared samples after CO₂ reduction electrolysis (a) Flaky Bi₆₀Pb₄₀ (b) Web-like Bi₈₅Pb₁₅

Figure S7. DFT optimized geometric models for surface slabs with adsorbed H*, COOH*, CO*, OCHO*, and HCOOH* on (a) $Bi_{100}Pb_0$ (b) $Bi_{60}Pb_{40}$ (c) $Bi_{85}Pb_{15}$ electrode surface as indicated; the purple, black, red, brown, and white circles characterize Bi, Pb, O, C, and H atoms, respectively.

Table S3. Comparison of charge transfer (R _{ct} ,), solution resistance (R _s) and phase constant	
element (CPE Y ₀ , N) of all samples.	

Catalysts	$\operatorname{Rs}\left(\Omega\right)$		Rct (Ω)		CPE (µMho*s^N)			χ^2
	R	EE	R	EE	Y ₀	N	EE (%)	
		(%)		(%)				
Bi85Pb15	38.323	2.4506	228.28	1.6207	0.00014256	0.76358	0.38567	0.00067
Bi60Pb40	39.06	2.0914	457.7	1.5252	0.00010043	0.80051	0.31288	0.000855
Bi50Pb40Sn10	41.197	3.2589	4796.8	3.9898	6.6769E-05	0.80337	0.62019	0.00563

Here, R_s (Solution Resistance): Demonstrate the resistance of the electrolyte. R_{ct} (Charge Transfer Resistance): Reveals the resistance related with electron transfer at the electrode/electrolyte interface. CPE (Constant Phase Element): Shows the double-layer capacitance considering surface heterogeneity. EE (estimated error).

Table S4. For the Bi₁₀₀Pb₀(111), Bi₈₅Pb₁₅(111), and Bi₆₀Pb₄₀(111) surfaces, reaction free energy (the values of $\triangle E$, $\triangle ZPE$, $\triangle \int CpdT$, and $-\triangle TS$ in the four basic reaction steps of CO₂ reduction) were calculated (U = 0). All data is expressed in eV.

Elemental step*	ΔE (ev)	\triangle ZPE (ev)	∆∫CpdT (ev)	-∆TS (ev)	ΔG (ev)			
Bi ₁₀₀ Pb ₀ (111)								
(1)	0.07	0.00	-0.02	0.52	0.61			
(2)	-0.19	0.20	-0.05	0.21	0.13			
(3)	-0.10	0.23	-0.04	0.13	0.21			
(4)	0.04	-0.06	-0.02	-0.81	-0.83			
Bi85Pb15(111)								
(1)	0.07	0.00	-0.02	0.52	0.59			
(2)	-0.61	0.20	-0.05	0.21	-0.24			
(3)	0.19	0.23	-0.04	0.21	0.63			
(4)	0.03	-0.06	-0.02	-0.82	-0.85			
Bi60Pb40(111)								
(1)	0.00	0.00	-0.02	0.52	0.53			
(2)	-0.73	0.20	-0.05	0.21	-0.35			
(3)	0.33	0.20	-0.03	0.11	0.61			
(4)	0.07	-0.06	-0.02	-0.82	-0.82			

*As stated in the main text's "Theoretical computations and mechanism discussion" section, it shows the basic elementary steps for CO₂-to-HCOOH reduction.

The computational hydrogen electrode (CHE) model was used to compute the reaction free energies. Every stage of the electrochemical process was viewed as a simultaneous proton-electron

pair transfer that depended on the applied voltage. The following formulas provided the reaction free energy for stages 1 through 4:

$$\Delta G_{(1)} = G[*CO_2] - G[*] - G[CO_2]$$
(1)

$$\Delta G_{(2)} = G[*OCHO] - G[*CO_2] - G[H^+ + e^-]$$
(2)

$$\Delta G_{(3)} = G[*HCOOH] - G[*OCHO] - G[H^+ + e^-]$$
 (3)

$$\triangle G_{(4)} = G[*] + G[HCOOH] - G[*HCOOH]$$
(4)

$$G[H^{+} + e^{-}] = \frac{1}{2} G[H_2] - eU$$
(5)

where the elementary charge is denoted by "e" and the applied overpotential (against RHE) by "U".

The following formula was used to determine all species' free energy:

$$G = E_{elec} + E_{ZPE} + \int C_p dT - TS$$
(6)

Where, (E_{elec}) was the DFT-optimized total energy, zero-point energy (E_{ZPE}) , heat capacity (C_p) , and entropy (S). The latter quantities were computed using statistical mechanics within the harmonic approximation.

The following formula was then used to determine the binding energy (E_b) :

$$E_{b} = E_{ads/sub} - (E_{sub} + E_{ads})$$
(7)

The total energies of the adsorbate-substrate system, the pristine surface, and the isolated adsorbate were denoted as $E_{ads/sub}$, E_{sub} , and E_{ads} , respectively.

Table S5. The DFT-calculated binding energies (E_b in eV) for the *OCHO and*HCOOH intermediates on the Bi₁₀₀Pb₀(111), Bi₈₅Pb₁₅(111), Bi₆₀Pb₄₀(111) surfaces are presented, respectively.

Catalysts	$E_{\rm b}$ (*OCHO)	<i>E</i> _b (*HCOOH)
$Bi_{100}Pb_0(111)$	-2.73	-0.04
BiasPb15(111)	-3.14	-0.03
Bi60Pb40(111)	-3.26	-0.07

Catalysts	Electrolyte	Potential	FE _{HCOOH}	Current	Stability (hr)	References
			(70)	cm^{-2})	(111.)	
Web-like	0.2 M	-1.0 V	96.5%	16	13	This work
Bi85Pb15	KHCO ₃	vs. RHE				
Flaky	0.2 M	-1.0 V	83%	9	13	
Bi60Pb40	KHCO ₃	vs. RHE				
np-Bi	0.1 M	-0.956 V	92.6%	14.2	24	1
	KHCO ₃	vs. RHE				
Pb ₇ Bi ₃	0.5 M	-1.01 V	~91.86 %	15.56	-	2
	KHCO ₃	vs. RHE				-
L D' MG	0.5 M	-0.94 V	90%	14.1	-	3
$\ln_{16}B_{184}$ NS	KHCO3	vs RHE				
(nanosphere)			0.4.00/			
$B_{15}Sn_{60}$	0.1 M	-1.0 V vs.	94.8%	34	20	4
	KHCO ₃	RHE				
Bi-Sn	0.1 M	-1.0 V vs.	93.9%	9.3	10	5
aerogel	KHCO ₃	RHE				
Cu-Bi	0.1 M	-0.8 V vs.	90%		-	6
	KHCO ₃	RHE		>2		
CuBi-100	0.5 M	1.0 V vs.	94.7%		8	7
	KHCO ₂	RHE	,,,,,	12.8		,
BiIn ₅ -	0.5 M	-0.86 V	97.5%	13.5	15	8
500@C	KHCO ₃	vs. RHE				
BixSny/Cu	0.1 M	-0.84 (vs	90.4%	30	12	9
	KHCO ₃	RHE)				
Cu ₁ -	0.5 M	-0.94 (vs	93.4%	10.1	10	10
Bi/Bi ₂ O ₃ @C	KHCO ₃	RHE)				

Table S6. Comparison of HCOOH selective CO₂ reduction catalysts in KHCO₃ electrolyte reported in literature.

Refrences

- W. Lai, Y. Liu, M. Zeng, D. Han, M. Xiao, S. Wang, S. Ren and Y. J. N. Meng, Nanomaterials 2023, 13, 1767.
- [2] X. Zhang, X. Jiao, Y. Mao, X. Zhu, H. Kang, Z. Song, X. Yan, X. Yan, C. Han, L. J. S. Cui, Sep. Purif. Technol. 2022, 300, 121848.
- [3] D. Tan, W. Lee, Y. E. Kim, Y. N. Ko, M. H. Youn, Y. E. Jeon, J. Hong, J. E. Park, J. Seo, S. K. J. A. A. M. Jeong, *Appl. Mater. Interfaces* 2022, 14, 28890-28899.
- [4] Z. Li, Y. Feng, Y. Li, X. Chen, N. Li, W. He and J. J. C. E. J. Liu, *Chem. Eng. J.* 2022, 428, 130901.
- [5] Z. Wu, H. Wu, W. Cai, Z. Wen, B. Jia, L. Wang, W. Jin and T. J. A. C. Ma, Angew. Chem. Int. Ed. 2021, 133, 12662-12667.
- [6] Z. B. Hoffman, T. S. Gray, Y. Xu, Q. Lin, T. B. Gunnoe and G. J. C. Zangari, *ChemSusChem.* 2019, 12, 231-239.
- [7] Y. Xiong, B. Wei, M. Wu, B. Hu, F. Zhu, J. Hao and W. J. J. o. C. U. Shi, J. CO₂ Util. 2021, 51, 101621.
- [8] Y. Guan, X. Zhang, Y. Zhang, T. N. Karsili, M. Fan, Y. Liu, B. Marchetti, X.-D. J. J. o. C. Zhou, J. Colloid Interface Sci. 2022, 612, 235-245.
- [9] Q. Li, Y. Zhang, X. Zhang, H. Wang, Q. Li, J. Sheng, J. Yi, Y. Liu, and J. J. I. Zhang, Ind. Eng. Chem. Res. 2019, 59, 6806-6814.
- [10] Y. Xue, C. Li, X. Zhou, Z. Kuang, W. Zhao, Q. Zhang and H. J. C. Chen, *ChemElectroChem.* 2022, 9, e202101648.