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Experimental section
Surface treatment of A100
The A100 sample was treated in KOH solution with different concentrations (1, 3, 6 and 8 M) by 
applying cyclic voltammetry at a voltage range of -1.6~0.7 V with a scanning rate of 50mV s-1 for 
200 cycles.
Material characterizations 
The X-ray diffraction (XRD) was performed on the Rigaku Smartlab X-ray diffractometer with 
Cu Kα radiation with a scan rate of 2 degrees min−1. In-situ Raman measurements were performed 
on a Micro Raman System (Horiba LABHRev-UV) under the excitation sources of 532 nm. 
Specifically, an electrochemical workstation (CHI 660E) was connected to the in-situ Raman test 
setup. Starting from the overpotential of 0 mV, a voltage change gradient of 20 mV was applied, 
and activation was carried out at the measured voltage for 1 minute before the Raman test. In-situ 
Fourier transform infrared absorption spectrometer (FTIR) were performed on a Shimadzu 
IRXross FTIR. Specifically, an electrochemical workstation (CHI 660E) was connected to the in-
situ FTIR test setup (external reflection mode). Starting from an overpotential of 0 mV, a voltage 
change gradient of 20 mV was applied, and activation occurred at the measured voltage for 1 
minute before the Raman test. Unlike the in-situ Raman test, the in-situ FTIR test includes a 
background scan for each measurement. Scanning electron microscopy (SEM) and X-ray energy 
dispersive spectroscopy (EDS) was performed on a Zeiss Sigma instrument. The chemical 
composition and state of elements on the surface of the sample were analyzed by X-ray 
photoelectron spectroscopy (XPS, Thermo Fisher Scientific) with Al Kα X-ray (hν = 1486.7 eV). 
Inductively coupled plasma mass spectrometry (ICP-MS) (NexION 1000G ICP-MS) was used to 
determine the elemental content in the electrolyte after long-term stability test.
Electrochemical measurements:
Electrochemical measurements were conducted using a three-electrode system with treated or 
untreated A100 as the working electrode, a Hg/HgO (1 M KOH) as the reference electrode and a 
graphite rod as the counter electrode on a ModuLabXM electrochemical workstation. The 
electrocatalytic properties were evaluated in laboratory condition (1 M KOH, room temperature) 
and industrial condition (6 M KOH, 60 °C). Prior to the performance tests, the samples were pre-
activated via CV with the potential range of -1.4~-1.6 V (HER) and 1.6~1.8 V (OER) at a scan 
rate of 300 mV s-1 for 500 cycles. The HER and OER performance of catalysts was measured by 
applying linear sweep voltammetry with a sweep rate of 5 mV cm-1 in 1 M KOH (room 
temperature) or 6 M KOH (60 °C). Electrochemical impedance spectroscopy (EIS) measurements 
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were conducted with a frequency range from 10-2 to 105 Hz in 1 M KOH. Long-term stability 
assessment was performed in an alkaline flow cell at a current density of 400 mA cm-2 for 500 
hours in 6 M KOH (60 °C).

Fig. S1 (a) Schematic illustration of the treatment process of A100. CV treatment curves of (b) 

A100-1, (c) A100-3, (d) A100-6, and (e)A100-8, respectively.
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Fig.S2 (a) SEM image and EDS mapping results, and (b) EDS element atomic ratio of A100-6.
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Fig. S3 (a) SEM image and EDS mapping results, and (b) EDS element atomic ratio of A100.
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Fig. S4 ICP-MS results of dissolved metal contents in electrolyte after the CV treatment process 

in KOH with different concentrations. 

Fig. S5 XRD patterns of A100 and treated A100 samples.
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Fig. S6 The XPS survey spectra of (a) A100, (b) A100-6 and (c) A100-6 after durability test.

Fig. S7 The XPS data showing the (a) Fe 2p, (b) Co 2p, (c) Ni 2p, (d) Cr 2p, (e) Mo 3d, and (f) O 

1s signals of A100-6.
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Fig. S8 The XPS data showing the (a) Fe 2p, (b) Co 2p, (c) Ni 2p, (d) Cr 2p, (e) Mo 3d, and (f) O 

1s signals of A100.

Fig. S9 The XPS data showing the (a) Fe 2p, (b) Co 2p, (c) Ni 2p, (d) Cr 2p, (e) Mo 3d, and (f) O 

1s signals of A100-6 after the stability test.
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Fig.S10 UPS spectra of (a) A100, (b) A100-1, (c) A100-3, (d) A100-6 and (e) A100-8. (f) 

Comparison of WF values of treated and untreated A100 samples.
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Fig. S11 Gaussian peak fitting results of the Raman peaks of water during the HER process for 

A100-6 in (a) 1 M KOH and (b) 6 M KOH and A100 in (c) 1 M KOH and (d) 6 M KOH. 
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Fig.S12 In-situ Raman spectra (OER process) of A100-6 in (a) 1 M KOH, (b) 3 M KOH and (c) 6 

M KOH solution. In-situ Raman spectra (OER process) of A100 in (d) 1 M KOH, (e) 3 M KOH 

and (f) 6 M KOH solution at different overpotentials. 

Fig.S13 (a) HER and (b) OER polarization curves of industrial nickel net in laboratory condition 

(1 M KOH and ambient temperature).
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