

Supporting information

Suppressing the penetration of 2D perovskites for enhanced stability of perovskite solar cells

Xinran Xu, Zhuoqiong Zhang, Tanghao Liu*, Pengchen Zhu, Zhipeng Zhang*, Guichuan Xing*

X. Xu, Dr. T. Liu

School of Physical Sciences, Great Bay University, Dongguan, 523000, China

Email: tanghaoliu@gbu.edu.cn

X. Xu

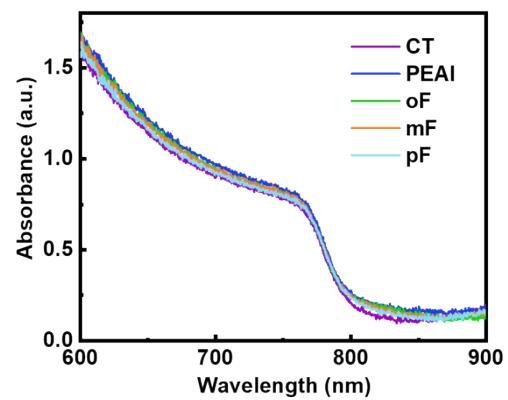
Department of Physics, Hong Kong Baptist University, Hong Kong SAR, 999077, China

Dr. Z. Q. Zhang

Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong SAR, 999077, China


Prof. P. Zhu

School of Sustainable Energy and Resources, Nanjing University, Suzhou, 215163, China


Dr. Z. P. Zhang, Prof. G. Xing

Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China

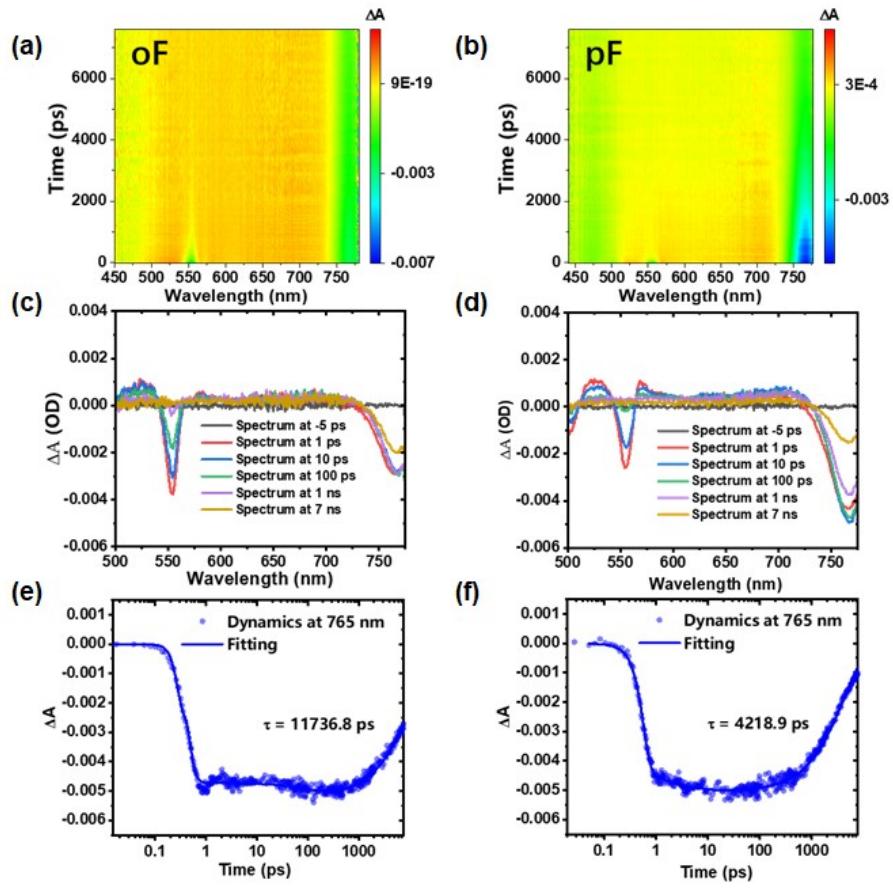
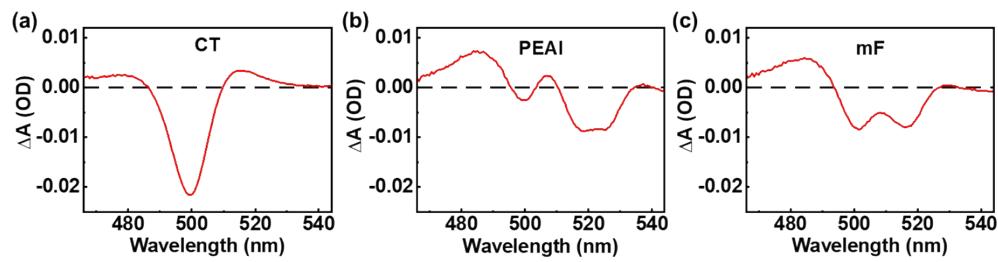

Email: zhipengzhang@um.edu.mo, gcxing@um.edu.mo

Figure S1. (a) X-ray diffraction patterns, (b) Pb4f XPS spectra, and (c) FTIR spectra of the control perovskite film, PEAi-treated film and o/m/p-FPEAI-treated films.


Figure S2. UV-vis spectra of the control perovskite film, PEAI-treated film and o/m/p-FPEAI-treated films.

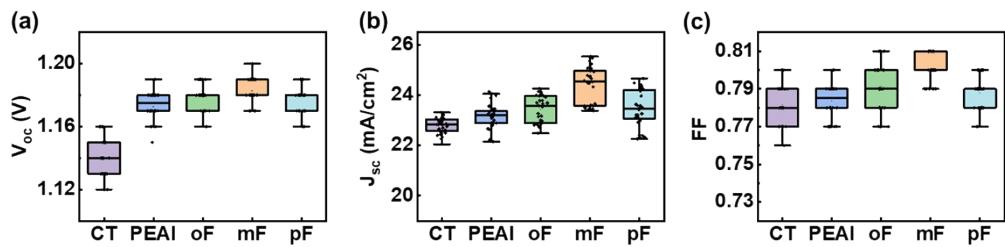
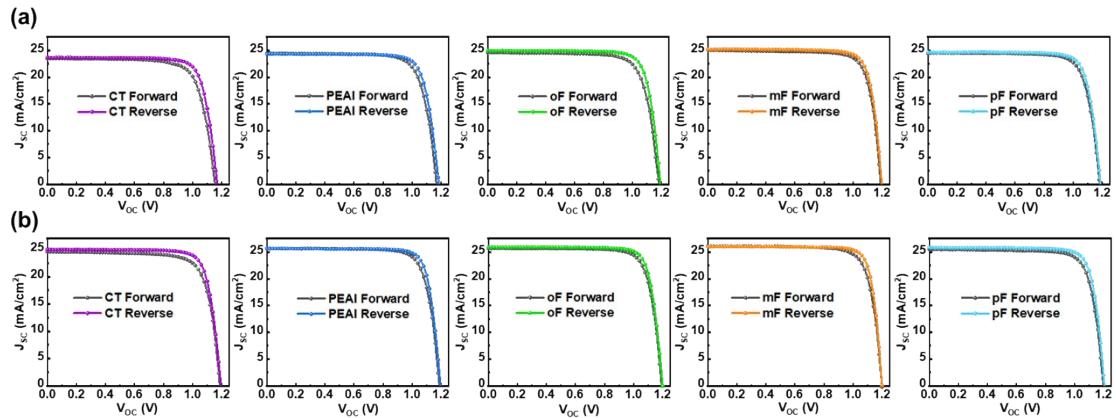

Figure S3. (a-b) Contour plot TA spectra; (c-d) TA spectra at various decay time; (e-f) decay curves of the bleaching peak at 765 nm for perovskite films modified with (a, c, e) o-FPEAI and (b, d, f) p-FPEAI.

Table S1. Carrier lifetimes of the control perovskite film, PEAI-treated film and o/m/p-FPEAI-treated films.


	A1	T1 (ps)	A2	T2 (ps)	A3	T3 (ps)	R²
CT	3.3E-4	2.1E-1	-2.8E-4	6.3	-2.7E-3	5462.1	0.995
PEAI	8.8E-4	134.6	-6.5E-4	134.6	-1.3E-3	5101.4	0.994
oF	4.4E-4	8.7E-2	1.2	103.5	-1.5E-3	11736.8	0.996
mF	2.7E-3	10.9	-2.7E-3	10.4	-1.8E-3	15341.6	0.996
pF	2.2E-3	1.2	1.1	6.9	-2.4E-3	4218.9	0.996

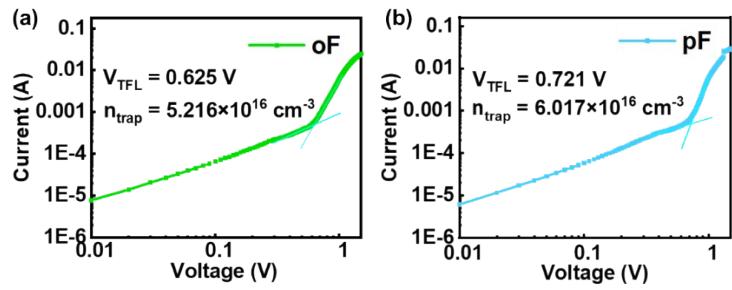

Figure S4. (a-c) Transient Absorption spectra of (a) control PbI₂ film, (b) PEAI-treated PbI₂ film, and (c) m-FPEAI-treated PbI₂ film.

Figure S5. Photovoltaic parameter distribution for five groups of PSCs with the composition of $\text{Cs}_{0.05}\text{FA}_{0.88}\text{MA}_{0.07}\text{PbI}_{2.79}\text{Br}_{0.21}$. **(a)** Open-circuit voltage (V_{oc}). **(b)** Short-circuit current density (J_{sc}). **(c)** Fill factor (FF).

Figure S6. The forward and reverse scan curves of the control PSC, PEAI-treated PSC, and o/m/p-FPEAI-treated PSCs with the composition of (a) $\text{Cs}_{0.05}\text{FA}_{0.88}\text{MA}_{0.07}\text{PbI}_{2.79}\text{Br}_{0.21}$ and (b) $\text{Cs}_{0.05}\text{FA}_{0.92}\text{MA}_{0.03}\text{PbI}_{2.91}\text{Br}_{0.09}$.

Figure S7. Space-charge-limited current (SCLC) curves for (a) o-FPEAI-treated PSC, and (b) p-FPEAI-treated PSC.

Device Fabrication:

ITO substrates were cleaned with detergent, deionized water, acetone and ethanol in sequential and treated with UV Ozone before use. SnO_2 layer was deposited by spin coating the commercially SnO_2 colloidal solution (2.5 wt % in H_2O) at 3000 rpm for 40 s followed by heating at 150 °C for 30 minutes. The perovskite with the formula of $(\text{CsPbI}_3)_{0.05}(\text{MAPbBr}_3)_{0.07}(\text{FAPbI}_3)_{0.88}$ were dissolved in the mix solvents of DMF and DMSO with the volume ratio of 7:3. Besides, MCl was added in with a concentration of 15 mg/ml. The precursor solution was spin coated onto SnO_2 at 3000 rpm for 10 s and 6000 rpm for 30 s. 500 μL toluene was dropped on to the spinning film at the 15th second. The as deposited film was annealed at 100 °C for 30 minutes. To deposit the modification layer, PEAI or ortho-, meta-, para-FPEAI (o/m/p-FPEAI) was dissolved in IPA with a concentration of 4 mg/ml and spin coated on the surface of perovskite films at 6000 rpm for 60 s.

The optimized perovskite of $(\text{CsPbI}_3)_{0.05}(\text{MAPbBr}_3)_{0.03}(\text{FAPbI}_3)_{0.92}$ were dissolved in the mix solvents of DMF and DMSO with the volume ratio of 89:11. Besides, MCl was added in with a concentration of 34 mg/ml. The precursor solution was spin coated onto SnO_2 at 1000 rpm for 10 s and 4000 rpm for 30 s. 800 μL ether was dropped on to the spinning film at the 15th second. The as deposited film was annealed at 100 °C for 40 minutes.

To prepare the spiro-OMeTAD solution, 90.0 mg Spiro-OMeTAD powder, 28.5 μL 4-tBP and 17.5 μL Li-TFSI solution (260 mg of Li-TFSI powder dissolved in 1 mL acetonitrile) were dissolved in 1 ml CB. The spiro-OMeTAD layer was deposited by spin coating the solution at 3000 rpm for 30 s. Finally, 80 nm gold electrode was evaporated via a mask.

Characterization

SEM images were tested by LEO 1530 Field Emission Scanning Electron Microscope. AFM images were tested with Bruker MultiMode 8 Atomic Force Microscope. XRD patterns were tested by Bruker D8 Advance X-Ray Diffractometer.

XPS spectra were tested by a spectroscope (SPECS, Germany). UV-vis optical absorption spectra were recorded using a spectroscope (JASCO V-770EX, Japan). JV curves were collected by a source meter (Keithley 2400, Tektronix, USA) in combination with a solar simulator. PL spectra were tested by a spectrometer (Acton SpectraPro SP-2300, Teledyne Princeton Instruments, USA). TA spectra were measured with the HELIOS TA system.