Supplementary Information

Boosting Stability in Ni-Rich Cathodes: A Synergistic Approach to Surface and Bulk Modifications for Advanced Lithium-Ion Batteries

Shadab Ali Ahmed¹, Tripti Agnihotri², Ashok Ranjan², Chia-Yu Chang¹, Chun-Chi Chang^{1,4}, Rehbar Hasan², Yosef Nikodimos², Teklay Mezgebe Hagos², She-Huang Wu^{1,3*}, Wei-Nien Su^{1,3*}, and Bing Joe Hwang ^{2,3,4*}

¹Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan

²Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan

³Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan,

⁴National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan

*Corresponding author

She-Huang Wu – <u>wush@mail.ntust.edu.tw</u>

Wei-Nein Su - wsu@mail.ntust.edu.tw

Bing Joe Hwang - <u>bjh@mail.ntust.edu.tw</u>

Figure S1. Experimental procedure to prepare SCNMC/TNO powder.

Figure S2. (a) Particle size distribution for SCNMC and SCNMC/TNO by Dynamic Light Scattering (DLS), (b) d₅₀, d₉₀, and d_{mean} values (µm).

Figure S3. FTIR spectra for SCNMC and SCNMC/TNO.

Figure S4. XRD patterns of synthesized pure TiNb₂O₇ at 500 °C, 600 °C, and 700 °C.

Figure S5. (a) Single particle of SCNMC/TNO, SEM-EDS mapping of (a) Ni, (c) Co, (d) Mn, (e) Ti, and (f) Nb.

Figure S6. Specific surface area value for SCNMC and SCNMC/TNO.

Figure S7. XPS survey spectra of SCNMC and SCNMC/TNO

Figure S8. (a) and (c) shows Co 2p spectra with fitted components for SCNMC and SCNMC/TNO, (b) and (d) shows Mn 2p spectra with fitted components for SCNMC and SCNMC/TNO samples.

Figure S9. EIS profile of various mole % of TNO coated SCNMC

Table S1	Corresponding	g EIS fitting	data from	various	mole %	of coated SCNMC
----------	---------------	---------------	-----------	---------	--------	-----------------

Samples	R _b	R _{ct}
SCNMC	3.92	83.98
SCNMC/TNO0.5%	4.015	103.73
SCNMC/TNO0.7%	3.84	123.47
SCNMC/TNO0.9%	3.9	146.79
SCNMC/TNO1%	3.51	160.09

Figure S10. Li//NMC charge-discharge profiles with 1M LiPF₆ in EC: EMC (3:7, v:v) from 2.8 - 4.3 V at 0.1 C for (a) SCNMC, (b) SCNMC/TNO, c) corresponding discharge capacity vs coulombic efficiency plots; dQ/dV curves derived from the 1st to 100th cycle curve at 0.1 C for (d) SCNMC and (e) SCNMC/TNO, respectively, (f) rate capability.

Figure S11. XRD of SCNMC and SCNMC/TNO after 100 cycles and zoom view of (003) indexed peak.

Figure S12. XANES spectra of SCNMC and SCNMC/TNO before and after 100 cycles for (a) Mn, and (c) Co; FT-EXAFS spectra for (b) Mn, (d) Co, and (e) Nb- K edge.

Coating/doping compound	Electrolyte	Cycles	C- rate	Capacity retention (%)	Improvement due to modification (%)	Ref.
Pristine/ 4- CPBA/SCNMC	EC:EMC:DMC (1:1:1)	200	0.5C	61/ 82.5	21.5	1
Pristine/ SiO ₂ /NMC811	EC:EMC:DMC (1:1:1)	100	0.5C	73.4/ 87.3	13.9	2
Pristine/ MgO/NMC811	EC:EMC:DMC (1:1:1)	100	1C	74.5/ 90.1	15.6	3
Pristine/ ZrO2/NMC82	EC:DEC (1:1)	100	0.3C	64.2/ 89.4	25.2	4
Pristine/ LTZO/NMC88	EC:EMC:DMC (1:1:1)	150	1C	87.2/ 92.64	5.44	5
Pristine/PVP- PANI/NMC8	EC:EMC:DMC (1:1:1)	100	1C	66.3/ 88.2	21.9	6
TNO/SCNMC (single- crystalline NMC83)	EC:EMC(3:7)	100	1C	58.55/ 81.92	23.37	This work

 Table S2. Overview of performance metrics for Nickel-rich cathodes reported in literatures.

(a) SCNMC					(b) SCNMC/TNO						
$a = 2.8614 \text{ Å}, c = 14.2431 \text{ Å}, V = 100.997 \text{ Å}^3,$					a = 2.8621 Å, c = 14.2489 Å, V = 101.086						
c/a = 4.977, $Rwp = 4.27%$				Å ³ , $c/a = 4.978$, Rwp = 4%							
Elements	Site	X	у	Z	Occupancy	Elements	Site	X	у	Z	Occupancy
Li	3a	0	0	0	0.9792	Li	3a	0	0	0	0.9819
Ni	3a	0	0	0	0.0208	Ni	3a	0	0	0	0.0181
Li	3b	0	0	0.5	0.0208	Li	3b	0	0	0.5	0.0181
Ni	3b	0	0	0.5	0.8092	Ni	3b	0	0	0.5	0.8119
Со	3b	0	0	0.5	0.11	Со	3b	0	0	0.5	0.11
Mn	3b	0	0	0.5	0.06	Mn	3b	0	0	0.5	0.06
0	6c	0	0	0.259	1	0	6c	0	0	0.259	1

Table S3. Rietveld refinement data of Powder X-ray diffraction for (a) SCNMC and (b) SCNMC/TNO.