Supporting Information

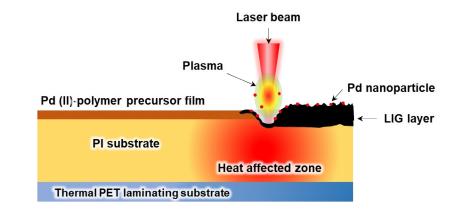
Enhanced electrochemical catalysis and sensing applications: fabrication process optimization and electrocatalytic characterization of polymeric matrix composite for one-step synthesis of Pd nanoparticle-decorated laser-induced graphene electrodes

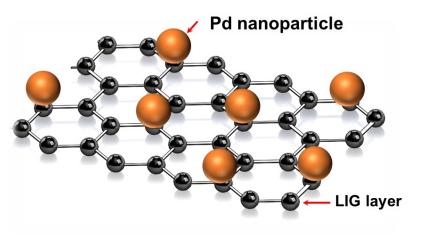
Asamee Soleh^{a,b,c,d,e}, Kasrin Saisahas^{d,e}, Kiattisak Promsuwan^{a,d,e}, Jenjira Saichanapan^{d,e},
Panote Thavarungkul^{a,b,c}, Proespichaya Kanatharana^{a,b,c}, Lingyin Meng^f, Wing Cheung Mak^{f,g**},
Warakorn Limbut^{a,b,d,e*}

- ^a Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- ^b Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, HatYai, Songkhla, 90110, Thailand
- ^c Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- ^d Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- ^e Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- ^f Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology, Linköping University, Linköping, SE-581 83, Sweden
- g Department of Biomedical Engineering, the Chinese University of Hong Kong, Hong Kong SAR, China

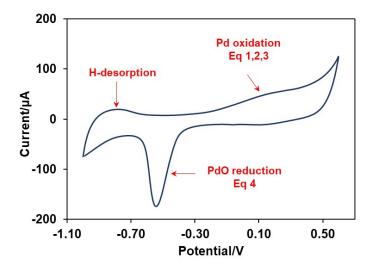
*Corresponding author at: Division of Health and Applied Sciences, Faculty of Science,

Prince of Songkla University, Hat Yai, Songkhla 90110,


Thailand.

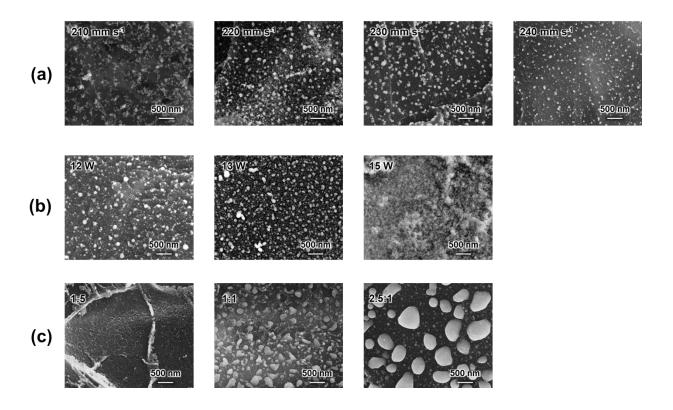

E-mail addresses: warakorn.l@psu.ac.th (W. Limbut)

**Corresponding author at: Department of Biomedical Engineering, the Chinese University of


Hong Kong, Hong Kong SAR, China

E-mail addresses: wing.cheung.mak@cuhk.edu.hk (W.C. Mak)

Schematic S1. Illustration of the laser induction process of Pd nanoparticles on the laser-induced graphene composite.


$$Pd + OH^- \longrightarrow Pd - OH_{ads} + H_2O + e^-$$
 (1)

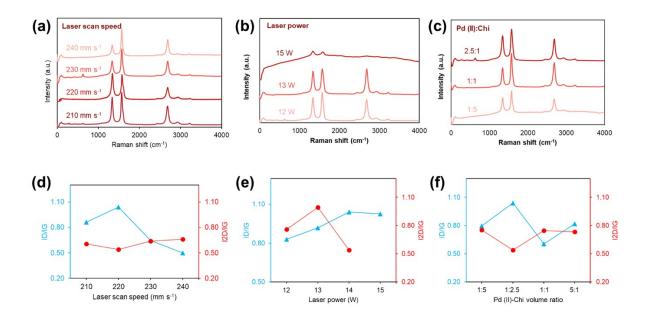
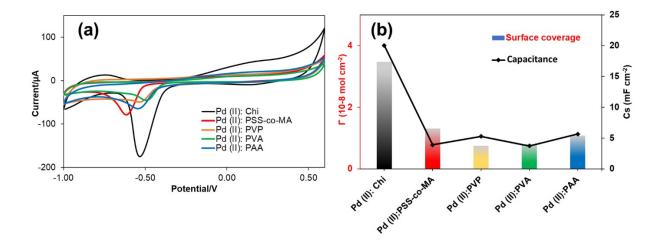
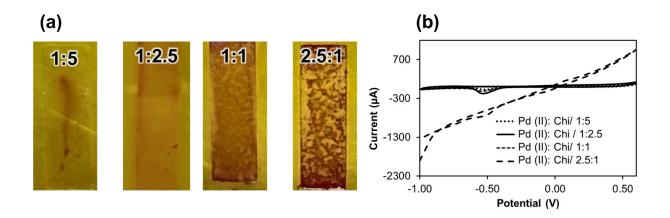
$$Pd - OH_{ads} + OH^{-} \longrightarrow Pd - O (Pd \ oxide) + H_2O + e^{-}$$
 (2)

$$Pd - OH_{ads} + Pd - OH_{ads} \longrightarrow Pd - O(Pd \ oxide) + H_2O$$
 (3)

$$Pd - O(Pd \ oxide) + H_2O + 2e^- \longrightarrow Pd + 2OH^-$$
 (4)

Fig. S1. CV response of nanoPd@LIG at scan rate of $0.05~V~s^{-1}$ in $0.1~mol~L^{-1}$ KOH; and the reaction mechanism of nanoPd@LIG.

Fig. S2. SEM image in mixed mode between SE (Secondary Electrons) and BSE (Backscattered Electrons) mode of the PdNPs formed at (a) various laser scan speed (210, 220, 230, and 240 mm s⁻¹) while keeping the laser power fixed at 14 W and precursor ratio at 1:2.5. (b) at laser powers (12, 13, and 15 W) while keeping the scan speed fixed at 220 mm s⁻¹ and precursor ratio at 1:2.5. (c) at the precursor ratio (1:5, 1:1, and 2.5:1 v/v) while keeping the scan speed and laser power fixed at 220 mm s⁻¹ and 14 W, respectively.

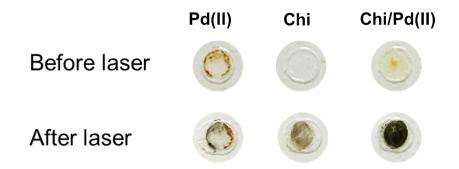

Fig. S3. Raman spectra and the intensity ratio (I_D/I_G and I_{2D}/I_G) of nanoPd@LIG with different (a and d) laser scan speed 210–240 mm s⁻¹, (b and e) laser power 12 – 15 W, and (c and f) Pd(II):Chi ratio of 1:5, 1:2.5, 1:1 and 2.5:1.

Fig. S4. (a) Cyclic voltammograms and (b) surface coverage of the catalytic activity and specific capacitance value of nanoPd@LIG nanocomposites fabricated using different polymers in the polymer–Pd(II)- precursor.

Fig. S5. (a) Photograph of top view laser irradiated Chi–Pd (II) precursors at different ratios. (b) Cyclic voltammograms of nanoPd@LIG synthesized at different Chi–Pd (II)ratios.

Fig. S6. Photographs of Pd (II), Chi, and Chi/Pd (II) film on glass slides before and after laser irradiation.

Equation S1:

$$\Psi = \frac{-0.6288 + 0.0021\Delta E_{p}}{1 - 0.017\Delta E_{p}}$$
(S1)

Equation S2:

$$\Psi = \frac{k_{\text{eff}}^{0}}{\left(\frac{n\pi FD\nu}{RT}\right)^{\frac{1}{2}}}$$
(S2)

 k^0_{eff} is heterogeneous electron transfer standard rate constant

 Ψ is kinetic parameter obtained from scan rate (v)-dependent cyclic voltammograms n is the number of electrons transferred

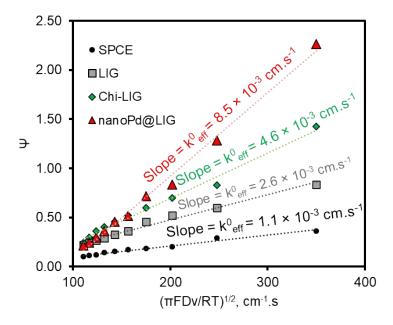
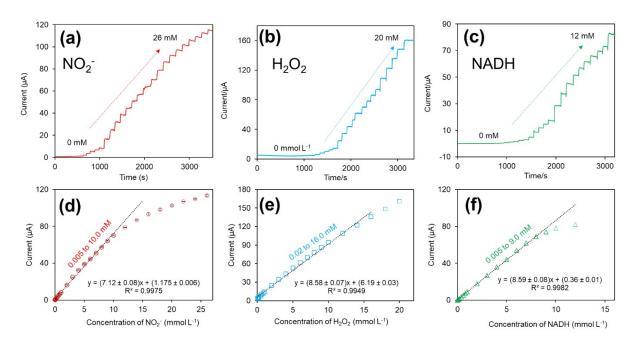
F is the Faraday's constant

v is the scan rate (V s⁻¹)

R is the universal gas constant

T is temperature (K)

D is the diffusion coefficient of the redox probe

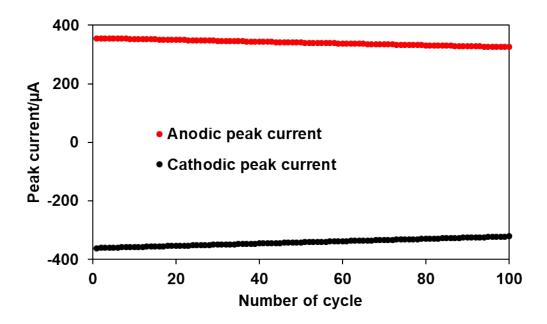

Fig. S7. HET kinetic analysis within the scan rate range of 10–100 mV s⁻¹, showing the kinetic parameter Ψ obtained via Eq. (S1), along with the linear regression for the estimation of the effective HET standard rate constant, k^0 _{eff}, via Eq. (S2).

Fig. S8. The i-t curves and the corresponding calibration plots of nanoPd@LIG in a 0.10 mol L⁻¹ PB (pH 7.4) after successive additions of different concentrations of (a and d) NO₂⁻ from 0 to 26 mmol L⁻¹ at 0.68 V (vs. pseudo-Ag/AgCl); (b and e) H₂O₂ from 0 to 20 mmol L⁻¹ at 0.58 V (vs. pseudo-Ag/AgCl); and (c and f) NADH from 0 to 12 mmol L⁻¹ at 0.28 V (vs. pseudo-Ag/AgCl).

Fig. S9. Digital images of nanoPd@LIG in multi-working electrode and three-electrode systems.

Fig. S10. Stability of nanoPd@LIG electrode in 5 mmol L^{-1} [Fe(CN)₆]^{3-/4-} containing 1.0 mol L^{-1} KCl via CV tests with consecutive 100 cycles.

 Table S1. Summary of laser parameter optimization.

Laser scan speed (mm s ⁻¹)	Γ (10 ⁻⁸ mol cm ⁻²)	PdNPs size (nm)	Cs (mF cm ⁻²)	Pore size (µm)	Percenta	age of th (%)	e element
210	2.2 ± 0.1	102 ± 34	13.1	5 ± 2	87.4	8.3	0.095
220	3.4 ± 0.1	94 ± 30	20.0	3.5 ± 0.9	84.3	11.8	0.140
230	2.7 ± 0.1	92 ± 29	13.2	3.4 ± 1	88.9	8.5	0.096
240	1.8 ± 0.6	77 ± 24	9.6	5 ± 2	93.3	3.9	0.042
Laser power (W)	Γ (10 ⁻⁸ mol cm ⁻²)	PdNPs size (nm)	Cs (mF cm ⁻²)	Pore size (µm)	Percenta	age of th (%) Pd	e element
12	1.56 ± 0.08	98± 50	7.479	3 ± 1	90.0	4.2	0.047
13	2.0 ± 0.1	105 ± 50	14.016	3 ± 1	91.5	5.5	0.060
14	3.3 ± 0.2	94 ± 30	20.027	3.5 ± 0.9	84.3	11.8	0.140
15	1.3 ± 0.4	Cannot measure	17.587	10 ± 6	72.4	3.5	0.048
Ratio of Pd (II): Chi (V/V)	Γ (10 ⁻⁸ mol cm ⁻²)	PdNPs size (nm)	Cs (mF cm ⁻²)		Percenta	ege of th	e element Pd/C
1:5	1.00 ± 0.05	Cannot measure	10.5		92.6	2.9	0.031
1:2.5	3.3 ± 0.2	94 ± 30	20.0		84.3	11.8	0.140
1:1	1.8 ± 0.3	159 ± 76	18.0		77.9	15	0.193
2.5:1	1.1 ± 0.3	257 ± 253	-		53.5	45	0.841

Table S2. Summary of thickness of the LIG layers using thickness analyzer (Mitutoyo, model 543-790B, Japan) on laser parameter.

Scan speed (mm s ⁻¹)	Thickness (µm)			
210	14 ± 4			
220	17 ± 1			
230	20 ± 5			
240	24 ± 2			
Laser power (W)				
12	21 ± 2			
13	17 ± 2			
14	16 ± 1			
15	Crack			

Table S3. Summary of characteristic bands present in Raman spectra.

Electrode		D	G	2D	D/G	2D/G
LIG	Position	1346.5	1578.9	2695.2		
	Intensity	1701	2136.5	1293	0.80	0.61
	FWHM	40.4	21.0	58.3		
Chi@LIG	Position	1346.4	1578.8	2693.1		
	Intensity	1762	4368	2026	0.40	0.46
	FWHM	48.0	32.39	50.1		
nanoPd@LIG	Position	1344.1	1578.9	2690.3		
	Intensity	2683.3	2580.3	1391.6	1.04	0.54
	FWHM	49.1	65.0	65.9		

Table S4. Analytical performance of the nanoPd@LIG electrode for NO₂⁻, H₂O₂, and NADH detection.

Analyte	Linear range	Sensitivity	LOD	
	$(\text{mmol } L^{-1})$	$(\mu A \ L \ mmol^{-1} \ cm^{-2})$	$(\mu mol \ L^{-1})$	
NO ₂ -	0.005 - 10.0	101	2.5	
H_2O_2	0.02 - 16.0	122	17.2	
NADH	0.005 - 9.0	64	3.4	