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S1 Evaluation metrics

In this work, the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R2

(Coefficient of Determination) were used for evaluating machine learning models.

The Root Mean Square Error (RMSE) is a standard way to measure the error of a model in

predicting quantitative data. It quantifies the difference between the predicted values (ŷi) and the

true values (yi). The formula for RMSE is defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (1)

where: 1) n is the number of observations. 2) ŷi is the predicted value for the i-th observation.

3) yi is the actual value for the i-th observation. 4) Lower values of RMSE indicate a better fit of

the model to the data. It has the same unit as the response variable.

The Mean Absolute Error (MAE) measures the average magnitude of errors in a set of pre-

dictions, without considering their direction. It calculates the average of the absolute differences

between predicted and actual values. The formula for MAE is given by:

MAE =
1

n

n∑
i=1

|ŷi − yi| (2)

where: 1) n is the number of observations. 2) ŷi is the predicted value for the i-th observation.

3) yi is the actual value for the i-th observation. 4) MAE provides a straightforward interpretation

of the average error. Like RMSE, lower values indicate a better fit, and it has the same unit as the

response variable.

The Coefficient of Determination (R2) measures the proportion of variance in the dependent

variable that is predictable from the independent variables. It essentially indicates how well the

model fits the data. The R2 value ranges from 0 to 1, with 1 indicating a perfect fit. The formula

for R2 is defined as:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(3)

where: 1) n is the number of observations. 2) yi is the actual value for the i-th observation.

3) ŷi is the predicted value for the i-th observation. 4) ȳ is the mean of the observed values. 5) An

R2 value close to 1 means that the model explains a large portion of the variance, whereas a value

close to 0 indicates that the model explains very little variance.
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S2 Datasets comparison

In this work, we compared the proposed method with the descriptor-based method [1], MOF-

Transformer [2], and PMTransformer [3]. Although the eight datasets listed in Table 2 are de-

rived from the study by Orhan et al. [1], their sizes differ slightly. The datasets used in this

work were directly generated from the source repository (https://github.com/ibarisorhan/MOF-

O2N2/tree/main/mofScripts) established by Orhan et al. [1]. While the datasets used in MOF-

Transformer [2] and PMTransformer [3] were also obtained from the same source, their exact data

details were not explicitly provided. To ensure a clear and transparent comparison, we compiled

the data information for all methods compared in this study, as summarized in Table S1.

Table S1: Comparison of datasets used in the published works across various MOF datasets.

Datasets CSTL Descriptor-based[1] MOFTransformer[2] PMTransformer[3]

Henry’s constant N2 4744 4755

Henry’s constant O2 5036 5045

N2 uptake (mol/kg) 5132 5158 5286 5286

O2 uptake (mol/kg) 5241 5259 5286 5286

Self-diffusion of N2 at 1 bar (cm2/s) 5056 5079 5286 5286

Self-diffusion of N2 at infinite dilution (cm2/s) 5192 5202

Self-diffusion of O2 at 1 bar (cm2/s) 5223 5247 5286 5286

Self-diffusion of O2 at infinite dilution (cm2/s) 5097 5115

S3 Model Repeatability

To ensure robust evaluation, we repeated the random data split 10 times, and for each split,

10 models were trained with different random seeds, resulting in a total of 100 models per dataset.

The performance metrics, including RMSE, MAE, and r2 correlation, were averaged over these 100

models and reported as the final results. This approach of using a single set of hyperparameters

and a consistent evaluation protocol highlights the robustness of the predictive model, making the

results reliable and comparable to existing methods in the literature. Specifically, the Gradient

Boosting Tree (GBT) model was constructed to perform regression analysis using the proposed

category-specific topological learning (CSTL) embedding as input features. We implemented the

gradient boosting regressor from Scikit-learn [4], optimizing the squared error loss function. The

model parameters were set as follows: max depth=7, max features=‘sqrt’, min samples leaf=1,

min samples split=2, n estimators=10,000, and subsample=0.5. The heatmap of MAE/r2/RMSE

values for 100 predictive models across eight datasets are shown in Figure S2, Figure S3, and

Figure S4.
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S4 Topological objects

Graph. The graph is a key structure for illustrating relationships among different entities, rep-

resenting one of the most prevalent data forms. It is composed of nodes (or vertices) and edges,

which establish the connections between these nodes. Graphs can be enhanced in several ways,

such as by adding directionality to create directed graphs (digraph), assigning weights for weighted

graphs, or incorporating geometric properties in geometric graphs. These enhanced graphs are

excellent for representing relationships and attributes in various scenarios. Formally, a graph is

defined as a pair (V,E), where V represents a set of vertices and E, a subset of V ×V , signifies the

set of edges. Vertices and edges are the core components of a graph. Tools like adjacency matrices,

degree matrices, and Laplacian matrices are utilized to describe the interactions between vertices

and edges. These matrices are pivotal in graph theory and network analysis, capturing the graph’s

underlying topological structure. Although graphs are inherently one-dimensional, methods from

simplicial complexes are sometimes used to express the graph’s higher-dimensional aspects.

Simplicial complex. A simplicial complex is a type of topological space constructed from basic

units known as simplices. A simplex extends the notion of a triangle or tetrahedron to any number

of dimensions. For a set of vertices V , a k-simplex σk is typically represented by a subset of V

containing k+1 elements, and is expressed as σ = ⟨v0, v1, . . . , vk⟩. Any subset of σk−1 is considered

a face of σk.

A simplicial complex, denoted as K, based on a vertex set V , is defined by a group of simplices

that meet two criteria: (1) If a simplex σ is part of K, then all of its faces, including individual

vertices, are also included in K; (2) The intersection of any two simplices within K is either empty

or a face (subset) common to both simplices. From these characteristics, it’s evident that a graph

can be interpreted as a 1-dimensional simplicial complex, where its simplices consist of vertices

(0-simplices) and edges (1-simplices).

In a k-simplex, the boundary is the set of its (k−1)-dimensional faces. The boundary operator,

symbolized as ∂k, operates on a k-simplex ⟨v0, v1, . . . , vk⟩ in the following mathematical form:

∂k⟨v0, v1, . . . , vk⟩ =
k∑

i=0

(−1)i⟨v0, . . . , v̂i, . . . , vk⟩, (4)

where v̂i indicates the exclusion of the vertex vi. A chain complex is a series of Abelian groups (or

modules), interconnected by boundary operators. Suppose G is an Abelian group. The k-th group

in the chain complex, denoted as Ck(K;G), comprises formal sums of k-simplices. The boundary

operator ∂k : Ck(K;G) → Ck−1(K;G) maps a k-simplex to its (k − 1)-dimensional boundary. The

sequence of the chain complex can be represented as:

· · · ∂k+1−−−→ Ck(K;G)
∂k−→ Ck−1(K;G)

∂k−1−−−→ · · · ∂2−→ C1(K;G)
∂1−→ C0(K;G). (5)

A critical characteristic of the boundary operator is that the composition of two consecutive bound-

ary operators equals zero, i.e., ∂k−1 ◦ ∂k = 0. This implies that the boundary of a boundary is

always null, carrying significant topological implications. The structure of the chain complex pro-

vides a systematic way to analyze how boundaries integrate with each other. Beyond the simplicial
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complex, other topological objects—such as the clique complex, cell complex, cellular sheaf [5], hy-

pergraph, neighborhood complex [6, 7], Hom complex, knot, link, and tangle [8, 9]—can be further

explored in the analysis of the given data.
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S5 Supplementary tables

In the following section, we provide supplementary tables that offer additional data and in-

sights pertinent to our study. Readers are encouraged to refer to these tables for a more detailed

exploration of the topics covered in the main text.

Table S2: Comparison of CSTL models with different training-test splits.

Datasets
CSTL(80% training, 10% test) CSTL(80% training, 20% test)

r2 mae rmse r2 mae rmse

Henry’s constant N2 0.80 4.90E-07 7.25E-07 0.79 4.98E-07 7.36E-07

Henry’s constant O2 0.83 4.98E-07 7.63E-07 0.83 5.00E-07 7.69E-07

N2 uptake (mol/kg) 0.79 4.98E-02 7.37E-02 0.79 4.98E-02 7.39E-02

O2 uptake (mol/kg) 0.85 4.50E-02 6.82E-02 0.85 4.54E-02 6.90E-02

Self-diffusion of N2 at 1 bar (cm2/s) 0.80 3.40E-05 4.69E-05 0.80 3.39E-05 4.64E-05

Self-diffusion of N2 at infinite dilution (cm2/s) 0.80 3.75E-05 5.15E-05 0.80 3.79E-05 5.21E-05

Self-diffusion of O2 at 1 bar (cm2/s) 0.82 3.21E-05 4.45E-05 0.81 3.32E-05 4.62E-05

Self-diffusion of O2 at infinite dilution (cm2/s) 0.79 3.34E-05 4.53E-05 0.79 3.35E-05 4.54E-05

Table S3: Comparison of CSTL models (using only Call features) with various training-test splits.

Datasets CSTM(80% training, 10% test) CSTM(80% training, 20% test)

r2 mae rmse r2 mae rmse

Henry’s constant N2 0.70 6.17E-07 8.75E-07 0.70 6.22E-07 8.81E-07

Henry’s constant O2 0.74 6.52E-07 9.47E-07 0.74 6.54E-07 9.55E-07

N2 uptake (mol/kg) 0.71 6.14E-02 8.64E-02 0.71 6.18E-02 8.71E-02

O2 uptake (mol/kg) 0.77 5.90E-02 8.54E-02 0.76 6.04E-02 8.72E-02

Self-diffusion of N2 at 1 bar (cm2/s) 0.78 3.54E-05 4.82E-05 0.79 3.52E-05 4.77E-05

Self-diffusion of N2 at infinite dilution (cm2/s) 0.78 3.94E-05 5.38E-05 0.78 3.97E-05 5.41E-05

Self-diffusion of O2 at 1 bar (cm2/s) 0.80 3.41E-05 4.65E-05 0.79 3.51E-05 4.81E-05

Self-diffusion of O2 at infinite dilution (cm2/s) 0.78 3.51E-05 4.70E-05 0.77 3.52E-05 4.72E-05
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S6 Supplementary figures

In this section, we present a series of supplementary figures that further elucidate and com-

plement the findings discussed in the main text. Readers are encouraged to consult these figures

for a richer understanding and visual representation of the concepts and results introduced in the

main manuscript.

Figure S1: Comparison between predicted and true values for eight datasets on O2/N2 selectivity properties in

MOF materials. Panels a-h show prediction performance for different properties: Henry’s constant for N2/O2 (a,

e), N2/O2 uptake (mol/kg) (b, f), self-diffusivity of N2/O2 at 1 bar (cm2/s) (c, g), and self-diffusivity of N2/O2 at

infinite dilution (cm2/s) (d, h). Each panel displays the R2 and the MAE in the upper left corner. Each dataset was

randomly split, with 80% used for training and rest 20% for testing.
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Figure S2: Heatmap of MAE values for predictive models across eight datasets related to O2/N2 selectivity properties

in MOF materials. Panels (a)-(h) represent the MAE results for properties including Henry’s constant for N2 (a)

and O2 (e), N2/O2 uptake (mol/kg) for N2 (b) and O2 (f), self-diffusivity at 1 bar (cm2/s) for N2 (c) and O2 (g),

and self-diffusivity at infinite dilution (cm2/s) for N2 (d) and O2 (h). Each dataset was randomly split 10 times with

seeds ranging from 23 to 32, reserving 80% for training and 10% for testing. For each split, 10 separate models were

trained with random seeds from 13 to 22, resulting in a total of 100 models per dataset. The heatmap color bar

illustrates the MAE values for these 100 models, providing insight into prediction variability across different datasets

and modeling scenarios.
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Figure S3: Heatmap of r2 values for predictive models across eight datasets related to O2/N2 selectivity properties

in MOF materials. Panels (a)-(h) represent the MAE results for properties including Henry’s constant for N2 (a)

and O2 (e), N2/O2 uptake (mol/kg) for N2 (b) and O2 (f), self-diffusivity at 1 bar (cm2/s) for N2 (c) and O2 (g),

and self-diffusivity at infinite dilution (cm2/s) for N2 (d) and O2 (h). Each dataset was randomly split 10 times with

seeds ranging from 23 to 32, reserving 80% for training and 10% for testing. For each split, 10 separate models were

trained with random seeds from 13 to 22, resulting in a total of 100 models per dataset. The heatmap color bar

illustrates the r2 values for these 100 models.
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Figure S4: Heatmap of RMSE values for predictive models across eight datasets related to O2/N2 selectivity properties

in MOF materials. Panels (a)-(h) represent the MAE results for properties including Henry’s constant for N2 (a)

and O2 (e), N2/O2 uptake (mol/kg) for N2 (b) and O2 (f), self-diffusivity at 1 bar (cm2/s) for N2 (c) and O2 (g),

and self-diffusivity at infinite dilution (cm2/s) for N2 (d) and O2 (h). Each dataset was randomly split 10 times with

seeds ranging from 23 to 32, reserving 80% for training and 10% for testing. For each split, 10 separate models were

trained with random seeds from 13 to 22, resulting in a total of 100 models per dataset. The heatmap color bar

illustrates the RMSE values for these 100 models.
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Figure S5: t-SNE feature reduction for category-specific topological features of MOF materials, where each green

point represents a distinct MOF material. Highlighted circles and triangles indicate materials with maximum and

minimum values, respectively, for four key properties: Henry’s constant for N2, Henry’s constant for O2, self-diffusivity

of N2 at 1 bar (cm2/s), and self-diffusivity of O2 at 1 bar (cm2/s). 3D structures of the materials with minimum and

maximum values for each property are shown around the t-SNE plot.
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