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Supplementary Notes:
Supplementary Note 1 - Diffusion coefficient calculation based on GITT method
The galvanostatic intermittent titration technique (GITT) has been carried out to probe the
ion diffusivity of the graphite anodes. The GITT measurement was performed using Squitstat
potentiostats, an Admiral instrument, by alternating current density of 0.1C (1C =372 mA h
g!) for 20 min with a rest interval of 10 min. Prior to the GITT measurement, fresh coin cells
were fully charged under 0.1C and allowed to rest for up to 10 hours. The diffusion
coefficient was then calculated by the following formula :

4 mgVy\* /AE,\?
b= ( M,S ) (AEt)

Where D is the diffusion coefficient (cm? s1), T is the current pulse (s), mg is the mass of the

host material in the electrode (g), V), is the molar volume of the material (cm3 mol?), My is
the molecular weight of the host material (g mol?), and Sis the contact area of the
electrolyte and electrode interface (cm?). AE; And AE, are the voltage responses over the
relaxation and current pulse, respectively.

Supplementary Note 2 - Sweep rate voltammetry technique for capacitive contribution

In the battery system, there are consecutive electrochemical reactions occurs in the
electrodes. The sweep rate voltammetry is one of powerful technique to probe those
reactions. The total stored charge in a CV curve generally can be separate into three
components: (a) the faradaic contribution from the Li* ion insertion process; (b) the faradaic
contribution from the charge-transfer process with surface atoms, referred to as
pseudocapacitance; (c) the non-faradaic contribution from the double layer effect.’ ?

In addition, the contribution of both types capacitive effects, pseudocapacitance and double
layer effect, can be substantial due to the increasing surface area of the electrode.! These
faradaic contribution from insertion process (diffusion control) and capacitive effects can be
characterized using CV data at various scan rates and expressed by following formula:

i =av?

where i is current response to the scan rate v, while a and b are constants. The b value can
be obtained from the slope of log i vs log v. In addition, if the b value close to 0.5 would
indicate half-infinite linear diffusion controlled process, meanwhile b value close to 1
indicates the current is surface controlled.” 3> Since the b value is the sum of faradaic
response of diffusion controlled and capacitive effects, a closer examination from sweep
rate voltammetry can be applied to quantify the capacitive effects (kiv) and diffusion
controlled behavior (k2v*/?) by following formula:> 2% ©

i = kv + kv'/?

The k1 and k> values can be determined by plotting i/v/? vs v/2,



Supplementary Note 3 — Theoretical capacity
In the battery system, the theoretical capacity of any active material can be estimated by
Faraday’ law:
nkF
C=30om,
where, n is number electron transferred, F is Faraday constant, and My, is molecular weight

of active material. According to Faraday’s law, the theoretical capacity of LiCs and LiC, were
estimated to be 372 and 1117 mA h gl. Surprisingly, the specific capacitity of G10 is
obtained about 2200 mA h g?! at room temperature, which is almost six times of
conventional graphite capacity (LiCs). Based on the sweep rate cyclic voltammetry
measurement, the G10 demonstrated a positive b value nearly 0.6 (see Fig. 5e). Further
analysis of b value revealed a positive slope of k1 (0.1742) and almost 40% contribution from
capacitive effects in the G10 electrode at higher scan rate of 0.7 mV s?(see Fig. 5f).
Therefore, if we assume that the highest capacity of G10 (2200 mA h g!) is generated from
the contribution of both pseudocapacitive and diffusion controlled process (intercalation), a
total capacity of ~880 mA h g (40%) can be counted as a resulted from capacitive behavior
and ~1320 mA h g?! (60%) contributed from diffusion controlled process (intercalation).
Hence, it suggest that a maximum capacity of 1320 mA h gl is achieved via Li intercalation in
between interlayer of graphite, which is close to the formation of LiC,.

Supplementary Note 4 - Diffusion coefficient calculation based on EIS spectra

EIS is a powerful tool to investigate electrical properties of materials surface in association
with physicochemical processes such as charge transfer of electronic and ionic charge
carriers, mass transport through diffusion and convection.” The Nyquist plots typically can be
divided into three sections, namely high, mid and low frequency regions. The high frequency
region reflected the conduction through electrolyte, separator and wires.® The mid
frequency region is related to the charge transfer and the kinetic reactions.” ° The low
frequency region in which usually featured by 45° slope, represents the diffusion limited
region in the solid phase and is typically characterized by the Warburg impedance.'’ 12
Basically, there are two equations that define Warburg impedance:*3

1 1

Z'=0/w2z—jo/w?

1

‘ 7" =2 o/w2
where Z' and Z"are real and imaginary impedance, respectively. o is the angular frequency

and o is the Warburg coefficient. Therefore, The Warburg coefficient (5) can be determine

1
by the slope of Warburg plot (Z' vs 1/wz). Meanwhile, the relationship of Warburg
coefficient (o) and the diffusion coefficient is given by:!3

g= KT 1,
n?F2aVZ\ 3, 7p
pZch  Dp2ck

where R is ideal gas constant, T is absolute temperature, n is the number of electron

transferred, F is Faraday’s constant, A is the area of the electrode, Do and Dr are the

3



diffusivity of oxidation and reduction species, respectively. Then Co and Cr are the
concentration of oxidation and reduction species, respectively. In addition, because of the
fact that only Li* which moving inside of graphite electrode, the Warburg coefficient () can
be simplified by :

_RT < 1 )
n2F24y2 Dzl,i/ZCLi

where Dy and Cy; are the diffusion coefficient and concentration of Li*.
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Fig. S1. The cyclic voltammogram of: (a) G20; (b) G30; (c) G40 and (d) SP80. The inset figure
is the zoom in on the highlighted region.
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Fig. S2. The Galvanostatic charge/discharge profile of: (a) G20; (b) G30; and (c) G40 at
selected 100'™" charge/discharge under 1C. The inset figure is the zoom in on the highlighted
region.
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Fig. S4. The electrochemical performance of G20 and G80 with closer active material loading.
(a) Cycling performance at 1C rate. (b) Rate performance analysis.
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Fig. S5. The electrochemical performance of SP80 a at 1C rate.



Optical images FESEM images

Fig. S6. The optical and field emission scanning electron microscope (FESEM) images of G20
at full lithiation (0.02 V) and de-lithiation state (3.0 V) at 1C. (a&e) is the optical images; (b —
d) and (f — h) is the FESEM images with different magnification at full lithiation (0.02 V) and
de-lithiation state (3.0 V), respectively.
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Fig. S7. The FESEM images before and after 100 cycles at 1C rate. (a&d) is G80 and G20
before cycling; (b&c) and (e&f) are G80 and G20 after 100 cycles at different magnification,

respectively.
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Fig. S8. Raman spectra of G10 (a) and G80 (b) at before and after 100 cycles at 1C with the
highlighted area of G band.
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Fig. S9. The Cls ex-situ XPS spectra analysis of G20 at selected states on the 2" charge-
discharge process. (Q1: initial state at 3.0 V; Q2: charged state at 0.9 V; Q3: charged state at
0.2 V; Q4: charged state at 0.15 V; Q5: charged state at 0.1 V; Q6: charged state at 0.05 V;
Q7: charged state at 0.03 V; Q8: charged state at 0.02 V). This analysis have been
summarized in Fig. 2d.
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Fig. S10. The Lils ex-situ XPS spectra analysis of G20 at selected states on the 2" charge-
discharge process. (Q1: initial state at 3.0 V; Q2: charged state at 0.9 V; Q3: charged state at
0.2 V; Q4: charged state at 0.15 V; Q5: charged state at 0.1 V; Q6: charged state at 0.05 V;
Q7: charged state at 0.03 V; Q8: charged state at 0.02 V). This analysis have been
summarized in Fig. 2e — 2f.
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Fig. S11. The Cls ex-situ XPS spectra analysis of G80 at selected states on the 2" charge-
discharge process. (R1: initial state at 3.0 V; R2: charged state at 0.9 V; R3: charged state at
0.2 V; R4: charged state at 0.15 V; R5: charged state at 0.1 V; R6: charged state at 0.05 V; R7:
charged state at 0.03 V; R8: charged state at 0.02 V). This analysis have been summarized in

Fig. 2h.
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ex-situ XPS spectra analysis of G80 at selected states on the 2" charge-
discharge process. (R1: initial state at 3.0 V; R2: charged state at 0.9 V; R3: charged state at
0.2 V; R4: charged state at 0.15 V; R5: charged state at 0.1 V; R6: charged state at 0.05 V; R7:
charged state at 0.03 V; R8: charged state at 0.02 V). This analysis have been summarized in
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Fig. S13. The ex-situ XPS spectra analysis of G10 at selected

states on the 2" charge-

discharge process. (a) Selected states of ex-situ XPS analysis on the G10 during charge
process, namely P1: initial state at 3.0 V; P2: charged state at 0.9 V; P3: charged state at 0.2
V; P4: charged state at 0.15 V; P5: charged state at 0.1 V; P6: charged state at 0.05 V; P7:
charged state at 0.03 V; P8: charged state at 0.02 V. (b) and (c) C1s and Lils XPS spectra of
G10 shown at various charge stages. (d) Normalized Li* content in G10 at different charge

stages.
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Fig. S14. The Cls ex-situ XPS spectra analysis of G10 at selected states on the 2" charge-
discharge process. (P1: initial state at 3.0 V; P2: charged state at 0.9 V; P3: charged state at
0.2 V; P4: charged state at 0.15 V; P5: charged state at 0.1 V; P6: charged state at 0.05 V; P7:
charged state at 0.03 V; P8: charged state at 0.02 V). This analysis have been summarized in
Fig. S13b.
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Table S1. The adsorption energies (Ead), averaged interlayer distance (davg) and theoretical
capacities of Model I-IV.

Theoretical capacity

Model Ead (eV/Li atom) davg (A) (mA h g)
Pristine graphite - 3.348 -
Model IV (LiCza) -1.778 3.454 93
Model Il (LiC12) -1.853 3.668 186
Model Il (LiCs) -1.867 3.767 372
Model | (LiCy) -1.734 3.682 1116
Table S2. Summary of LIBs operated at low-temperatures.
Current Cycling
Temp. .
Electrode Electrolyte (2C) density performance ref
i (mAg?!) (mAhg?)
Oxidized graphite -20 223
Ag-graphite -20 0.5C 242
g-rapn 1M LiPFs EC:DEC:DMC (1C: 372 14
Al-graphite -20 mA h g) 245
Cu-graphite .20 B 149
0 145
LisTisO12 1 M LiPFs PC:DME -20 0.125C 115 15
-30 82
0 145
Li4TisO12/C 1 M LiPFs EC:DMC -10 1C 125 16
-20 119
Fluoride-doped . ) -10 175 130
LisTisO12 1 MLiPFs EC:EMC .20 175 100 17
o ) -10 175 135
LiaTls012-TiO 1M LiPFg EC:DMC:EMC -20 175 129 18
composite
-30 175 118
0 357
Sn-coated ) -10 342 19
graphite 1M LiPFs EC:DEC:DMC 20 0.5C 273
-30 152
Nano- 25 65 650
Sn/expanded 1 M LiPFs EC:DMC -20 65 200 20
graphite -20 130 130
-10 100 250
zllIDoporous Cu-zn 1 M LiPFs EC:DMC -20 100 200 21
y 30 100 150
CuzZnSnS 1M LiPFs EC:DEC:DMC -10 500 475 22
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1M LiPFs EC:DEC -10 500 372

MoS,/C 1 M LiPFs EC:DMC :;g 3100000 izg 23
Mesoporous/Ge 1.3 M LiPFe EC:DEC -20 85 566 24
N-doped graphite 1 M LiBF4 EC:DEC:DMC -10 0.1C 225 25
2C(1C=
1M LiPFe EC:DEC:DMC + 0 744 mA 380
Graphydine 2wt% VC hgl) 26
-10 2C 268
-10 4C 132
Ultra-low This
graphite content 1 M LiPFe EC:DEC 0 1c 1250 work
electrode (G10) -20 1C 1100
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