Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Enhanced P-Type Conductivity in Sb₂Se₃

through Akali and Alkaline Earth Metal Doping

Eunkyung Cho,* Shi-Joon Sung, Kee-Jeong Yang, Jae-Baek Lee, Van-Quy Hoang,

Bashiru Kadiri-English, Dae-Kue Hwang, Jin-Kyu Kang, Dae-Hwan Kim*

Division of Energy and Environmental Technology, DGIST,

Daegu, 42988, Republic of Korea

Email: ekcho@dgist.ac.kr; monolith@dgist.ac.kr; monolith@dgist.ac.kr</a

Content

Table S1. Formation energies (ΔH_f , in eV) of secondary phasesS3

Table S2. Elemental chemical potential (μ_i , in eV) and maximum chemical potential values(μ_{max} , in eV) of various dopants in Sb₂Se₃ under two growth conditionsS3

Figure S1. Band structures of (a) Na_{i} -, (b) K_{i} -, (c) Mg_{Sb2} -, and (d) Ca_{Sb2} -doped Sb_2Se_3 in comparison to the band structure of undoped Sb_2Se_3 S4

Dopant	Phase	ΔH_f	Phase	ΔH_f
Na	Na ₃ SbSe ₃	-6.90	Na ₃ SbSe ₃	-6.90
Κ	KSe	-2.20	KSe	-2.20
Mg	MgSe ₂	-3.12	MgSe	2.86
Ca	CaSe	-4.71	CaSe	-4.71

Table S1. Formation energies (ΔH_f , in eV) of secondary phases, as calculated at the HSE06-GD3DJ level of theory.

Table 2. Elemental chemical potential (μ_i , in eV) and maximum chemical potential values (μ_{max} , in eV) of various dopants in Sb₂Se₃ under two growth conditions, as calculated at the HSE06-GD3DJ level of theory.

Dopant	μ_i	$\mu^{Se-rich}_{max}$	Phase	$\mu^{Se-poor}_{max}$	Phase
Na	-1.62	-3.69	Na ₃ SbSe ₃	-3.46	Na ₃ SbSe ₃
Κ	-1.33	-3.53	KSe	-3.06	KSe
Mg	-1.90	-5.01	MgSe ₂	-4.29	MgSe
Ca	-2.14	-6.85	CaSe	-6.39	CaSe

Figure S1. Band structures of (a) Na_{i} -, (b) K_{i} -, (c) Mg_{Sb2} -, and (d) Ca_{Sb2} -doped Sb_2Se_3 in comparison to the band structure of undoped Sb_2Se_3 , as calculated at the HSE06-GD3DJ level of theory.