Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Fig S1 The structure of ϵ -CL-20 and a series of CL-20 host-guest systems optimized using DFT methods

Fig S2 The potential energy evolution of four different polymorphs of CL-20 systems during the adiabatic decomposition process simulated by DFTB

Fig S3 Electrostatic potential surface penetration diagrams of the cluster complexes H_2O-2 , HF-2, 2HF-2, H₂O-4, HF-4, and 2HF-4

Fig S4 Electron density difference maps of the cluster complexes H_2O-2 , HF-2, 2HF-2, H_2O-4 , HF-4, and 2HF-4, where blue indicates a decrease in electron density, green indicates an increase, and the isosurface is set at 0.0005.

Lattice	CL-20/H ₂ O					
parameter	Expt ¹³	GGA/PBE	GGA/PBE ¹⁸	GGA/PBE ²⁰		
a(Å)	9.478	9.686(2.19%)	9.247(-2.44%)	9.643(1.74%)		
b(Å)	13.206	13.398(1.45%)	12.842(-2.76%)	13.478(2.06%)		
c(Å)	23.561	23.616(0.23%)	22.842(-3.05%)	23.669(0.46%)		
Total error rate	/	3.87%	8.25%	4.25%		

Table S1 Comparison of the optimized cell parameters of $CL-20/H_2O$ in this article with experimental values and other computational results

The values in parentheses represent the percentage difference between the computed and experimental values, while the total error rate refers to the sum of the absolute percentage differences of each cell parameter.

	Space group	a/Å	b/Å	c/Å	$V/Å^3$	$\rho/(g \cdot cm^{-3})$
β-CL-20	PB21A	9.806	13.248	11.730	1485.14	1.910
γ-CL-20	P21/N	13.400	8.300	15.085	1499.57	1.835
ε-CL-20	P21/N	8.967	12.759	13.531	1482.14	1.964
CL-20/0	PBCA	9.616	13.369	23.728	3050.49	1.908
CL-20/O ₂	PB21A	9.703	13.401	23.716	3083.81	1.957
CL-20/F ₂	PB21A	9.649	13.368	23.853	3076.68	1.974
CL-20/H ₂ O	PB21A	9.686	13.398	23.616	3064.79	1.938
CL-20/HF	PB21A	9.678	13.533	23.679	3101.28	1.920
CL-20/2HF	PBCA	9.730	15.518	23.624	3107.61	1.959

Table S2 The cell parameters of optimized ϵ -CL-20 and a series of CL-20 host-guest systems

Table S3 the average bond length (L_{ave}), the maximum length (L_{MAX}), the average intramolecular hyperconjugation effect (E_{ave}), average bond energy (BE), total electron density ($\rho(r)$), and total potential energy density (V(r)) of N-NO₂ in different CL-20 host-guest systems

	CL-20/0	CL-20/F ₂	CL-20/O ₂	CL-20/HF	CL-20/H ₂ O	CL-20/2HF
L _{MAX} /Å	1.4865	1.4866	1.4875	1.4878	1.4875	1.4744
L _{ave} /Å	1.4485	1.4476	1.4473	1.4465	1.4457	1.4456
$E_{ave}/(kcal \cdot mol^{-1})$	28.11	28.10	28.06	27.98	27.90	27.78
$BE/(kJ \cdot mol^{-1})$	411.11	411.25	411.51	411.68	411.89	412.53
ρ(r)	1.823	1.824	1.827	1.830	1.834	1.835
V(r)	-2.550	-2.551	-2.555	-2.558	-2.570	-2.573

Table S4 Energy decomposition of the interactions between CL-20 and nonpolar molecules under sSAPT0/jun-cc-pVDZ conditions

Cluster	E _{ele}	E _{exc}	E _{ind}	E _{dis}	E _{tot}	Unit	Contact
O ₂ -1	-0.741	1.901	-0.112	-1.396	-0.349	kcal/mol	0-0
O ₂ -2	-0.343	0.411	-0.287	-1.143	-1.362	kcal/mol	H-O
O ₂ -3	-0.712	1.886	-0.111	-1.394	-0.331	kcal/mol	0-0
O ₂ -4	-0.275	0.233	-0.209	-0.898	-1.150	kcal/mol	H-O
F ₂ -1	-0.448	1.478	-0.073	-1.008	-0.051	kcal/mol	F-O
F ₂ -2	-0.057	0.245	-0.177	-0.795	-0.784	kcal/mol	H-F
F ₂ -3	-0.406	1.379	-0.070	-0.972	-0.069	kcal/mol	F-O
F ₂ -4	-0.009	0.143	-0.136	-0.635	-0.638	kcal/mol	H-F

Table S5 Energy decomposition of the interactions between CL-20 and polar molecules under sSAPT0/jun-cc-pVDZ conditions

Cluster	E _{ele}	E _{exc}	E _{ind}	E _{dis}	E _{tot}	Unit	Contact
H ₂ O-1	-2.426	3.709	-0.916	-1.847	-1.480	kcal/mol	О-Н…О
H ₂ O-2	-9.195	6.317	-1.683	-3.225	-7.786	kcal/mol	С-Н…О

H ₂ O-3	0.397	1.469	-0.258	-1.019	0.589	kcal/mol	О-Н…О
H ₂ O-4	-2.907	2.726	-0.539	-1.595	-2.315	kcal/mol	О-Н…О
HF-1	-1.403	0.582	-0.132	-0.474	-1.427	kcal/mol	F-H…O
HF-2	-4.294	3.906	-0.870	-2.139	-3.397	kcal/mol	C-H····F
HF-3	-0.585	0.361	-0.156	-0.503	-0.883	kcal/mol	F-H…O
HF-4	-5.365	9.522	-4.700	-2.446	-2.988	kcal/mol	F-H…O
2HF-1	-1.304	0.154	-0.107	-0.301	-1.558	kcal/mol	F-H…O
2HF-2	-5.289	2.822	-0.772	-1.746	-4.985	kcal/mol	C-H····F
2HF-3	-1.459	1.580	-0.408	-0.954	-1.241	kcal/mol	F-H…O
2HF-4	-2.043	2.440	-0.873	-1.157	-1.633	kcal/mol	F-H…O

Table S6 Hydrogen bond lengths (Å) and angles ($^\circ~$) of the host-guest complexes

Guest molecules	Х-Н⋯Ү	d(X-H)/Å	d(H⋯Y)/Å	d(X-Y)/Å	angle (X-H…Y)/deg
H ₂ O	С25-Н25…О97	1.094	2.422	2.993	110.9
	С37-Н37…О97	1.093	2.419	2.999	111.6
	O97-H49…O13	0.966	2.561	2.945	103.8
	O97-H49…O49	0.966	2.287	3.001	130.1
	O97-H53…O61	0.969	2.757	3.581	143.3
	O97-H53…O73	0.969	2.751	3.358	121.3
	O97-H53…O85	0.969	2.101	2.857	133.7
HF	C25-H25…F1	1.093	2.494	2.993	106.5
	C37-H37…F1	1.092	2.458	2.977	107.4
	F1-H49…O1	0.955	3.029	3.158	88.9
	F1-H49…O61	0.955	3.040	3.530	113.4
	F1-H49…O73	0.955	2.985	3.384	116.6
	F1-H49…O85	0.955	1.722	2.665	168.2
2HF	C1-H1…F38	1.094	2.600	3.118	108.0
	C4-H4…F38	1.092	2.399	3.009	113.7

F38-H37…O1	0.945	3.093	3.550	111.5
F38-H37…O7	0.945	2.551	3.081	115.7
F38-H37…O10	0.945	2.247	2.820	118.2

Table S7 Specific data on the electronic density $\rho(r)$ and potential energy density V(r) of each N-NO₂ in CL-20, as well as changes in the average intramolecular hyperconjugation $E\{n(O)\rightarrow\sigma^*(N-N)\}$ by rHBs and bHBs

	CL-20/0	CL-20/H ₂ O	CL-20/HF	CL-20/2HF
$E\{n(O)\rightarrow\sigma^*(N-N)\}$				
/(kcal·mol ⁻¹)				
1	26.67/26.56	25.50/26.20	27.05/26.94	26.59/26.52
2	26.70/28.62	27.19/27.97	27.77/29.00	27.12/28.55
3	29.95/29.65	29.97/29.83	30.10/29.65	30.02/29.92
4	31.60/31.09	30.71/30.77	31.04/30.95	30.35/30.68
5	29.98/28.92	29.87/27.72	29.20/24.47	29.96/27.96
6	24.16/23.45	23.90/23.49	23.83/23.51	24.02/23.45
7	26.67/26.56	26.93/26.76	26.66/26.30	26.59/26.52
8	26.70/28.62	26.25/28.06	26.36/29.14	27.12/28.55
9	29.95/29.65	30.15/29.60	30.3/29.87	30.02/29.92
10	31.60/31.09	31.53/31.07	31.36/31.11	30.35/30.68
11	29.98/28.92	29.73/28.52	29.93/28.97	29.96/27.96
12	24.16/23.45	24.2/23.64	24.21/23.68	24.02/23.45
ρ(r)				
1	0.314	0.321	0.313	0.315
2	0.307	0.309	0.304	0.307
3	0.299	0.298	0.297	0.299
4	0.279	0.284	0.282	0.285
5	0.293	0.298	0.311	0.297
6	0.331	0.332	0.332	0.332
7	0.314	0.312	0.315	0.315
8	0.307	0.312	0.307	0.307
9	0.299	0.298	0.296	0.299
10	0.279	0.279	0.279	0.285
11	0.293	0.295	0.293	0.297
12	0.331	0.33	0.33	0.332
V(r)				
1	-0.448	-0.461	-0.445	-0.450
2	-0.431	-0.434	-0.424	-0.430
3	-0.413	-0.411	-0.408	-0.413
4	-0.374	-0.384	-0.379	-0.386

5	-0.402	-0.413	-0.439	-0.410
6	-0.482	-0.483	-0.483	-0.484
7	-0.448	-0.443	-0.449	-0.450
8	-0.431	-0.442	-0.431	-0.430
9	-0.413	-0.411	-0.406	-0.413
10	-0.374	-0.374	-0.373	-0.386
11	-0.402	-0.406	-0.401	-0.410
12	-0.482	-0.479	-0.478	-0.484