Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Rational design of ZrO₂-supported *d*-block single-atom electrochemical catalysts for the nitrogen reduction reaction

Kai Zhu,^{a,b,c,d} Shaohua Lu^{*a,b,c,d} and Xiaojun Hu^{*a,b,c,d}

^a College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.

^b Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China.

^c Moganshan Diamond Research Center, Huzhou, 313200, China.

^d Diamond Joint Research Center for Zhejiang University of Technology and Tanghe Scientific and Technology Company, Huzhou, 313200, China.

E-mail: lsh@zjut.edu.cn (Shaohua Lu); huxj@zjut.edu.cn (Xiaojun Hu)

Figure S1. Energy convergence test for the K-points.

Figure S2. Energy convergence test for the K-points.

Figure S3. Maximum atomic force during structure optimization.

Figure S4. The top and side views of TM@ZrO₂ for 3d elements.

Figure S5. The top and side views of TM@ZrO₂ for 4d elements.

Figure S6. The top and side views of $TM@ZrO_2$ for 5d elements.

Figure S7. Possible reaction pathway for electrochemical reduction of N₂ to NH₃ molecule.

Figure S8. The top and side views of $TM@ZrO_2*N_2$ with end-on configuration for 3d elements.

Figure S9. The top and side views of TM@ZrO₂*N₂ with end-on configuration for 4d elements.

Figure S10. The top and side views of $TM@ZrO_2*N_2$ with end-on configuration for 5d elements.

Figure S11. The top and side views of TM@ZrO₂*N₂ with side-on configuration for 3d elements.

Figure S12. The top and side views of TM@ZrO₂*N₂ with side-on configuration for 4d elements.

Figure S13. The top and side views of TM@ZrO₂*N₂ with side-on configuration for 5d elements.

Figure S14. The top and side views of TM@ZrO₂*NNH for 3d elements.

Figure S15. The top and side views of TM@ZrO₂*NNH for 4d elements.

Figure S16. The top and side views of TM@ZrO₂*NNH for 5d elements.

Figure S17. The top and side views of TM@ZrO₂*NH₂ for 3d elements.

Figure S18. The top and side views of TM@ZrO₂*NH₂ for 4d elements.

Figure S19. The top and side views of TM@ZrO₂*NH₂ for 5d elements.

Figure S20. The top and side views of TM@ZrO₂*NH₃ for 3d elements.

Figure S21. The top and side views of TM@ZrO₂*NH₃ for 4d elements.

Figure S22. The top and side views of TM@ZrO₂*NH₃ for 5d elements.

Figure S23. (a) Relationship between the Gibbs free energy difference from $*N_2$ to *NNH ($\Delta G(*N_2 \rightarrow *NNH)$) and the charge transfer of TM atom (Q₁(TM)), where Q₁(TM) represents the charge transfer upon adsorption of the NNH moiety on the TM@ZrO₂ substrate. (b) Relationship between $\Delta G(*N_2 \rightarrow *NNH)$ and the charge transfer of the NNH moiety. (c) Relationship between the Gibbs free energy difference from $*N_2$ to $*NH_2$ to $*NH_3$ ($\Delta G(*NH_2 \rightarrow *NH_3)$) and the charge transfer of the TM atom (Q₂(TM)), where Q₂(TM) represents the charge transfer upon adsorption of the NH₂ moiety on the TM@ZrO₂ substrate. (d) Relationship between $\Delta G(*NH_2 \rightarrow *NH_3)$ and the charge transfer of the NH₂ moiety of the NH₂ moiety.

Figure S24. The NRR pathway of Nb@ZrO₂ with end-on configuration.

Figure S25. Top and side views of Nb@ZrO₂*NHNH and Nb@ZrO₂*NHNH₂.

Figure S26. The NRR pathway of Nb@ZrO2 with side-on configuration.

Figure S27. The free energy diagrams of Nb@ZrO₂ with side-on configuration.

Figure S28. The NRR pathway of $V@ZrO_2$ with end-on configuration.

Figure S29. The NRR pathway of $V@ZrO_2$ with side-on configuration.

Figure S30. The free energy diagrams of V@ZrO $_2$ with side-on configuration.

Figure S31. The NRR pathway of Hf@ZrO₂ with end-on configuration.

Figure S32. The free energy diagrams of $Hf@ZrO_2$ with end-on configuration.

Figure S33. The NRR pathway of Hf@ZrO2 with side-on configuration.

Figure S34. The free energy diagrams of Hf@ZrO2 with side-on configuration.

Figure S35. The NRR pathway of $Ti@ZrO_2$ with end-on configuration.

Figure S36. The free energy diagrams of Ti@ZrO2 with end-on configuration.

Figure S37. The NRR pathway of Ti@ZrO2 with side-on configuration.

Figure S38. The free energy diagrams of Ti@ZrO2 with side-on configuration.

Figure S39. The free energy diagrams of Nb@ZrO2 for end-on configuration with solvation effects.

Figure S40. The free energy diagrams of V@ZrO2 for end-on configuration with solvation effects.

Figure S41. Migration barriers of Nb atoms on the ZrO₂ substrate.

Figure S42. Migration barriers of V atoms on the ZrO_2 substrate.

Table S1. The values of feature importances, R-squared, and the predicted $-\Delta G_{max}$.

Feature importances	[0.08910426;0.11538999;0.13657659;0.42066228;0.23826688]
R-squared	0.8605754366572163
Predictions	[-0.9093431; -0.6350872; -0.5516542; -1.145729; -1.0477397;
	-1.4321031; -0.9211808; -0.552363; -0.4644711; -0.9414181; -
	1.1260527; -1.262606; -0.9755089; -1.6789716; -0.8632997; -
	0.4540794; -0.5874675; -0.8188272; -0.9012229; -0.9094237;
	-0.8704917; -1.507744]