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S1. Computational details. 

Note S1. Calculation of adsorption energy. 

The energy released or absorbed by different intermediates as they adsorb to surfaces or 

other molecules during the NRR process. 

                    Eads = Etotal - Eadsorbate - Eg-C16N5
                 (S1) 

where Etotal, Eadsorbate, and Eg-C16N5
 are the total energy of the adsorbed intermediates on the 

TM@g-C16N5, the isolated adsorbate, and the g-C16N5, respectively. According to this 

definition, a smaller (or more negative) value of Eads indicates a stronger adsorption energy of 

the intermediate on the catalyst or substrate surface, which means that the adsorption is more 

stable and tightly bound. 
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Note S2. Calculation of Gibbs free energy. 

The Computational Hydrogen electrode (CHE) model, based on Nørskov and his team 1, 

is used to calculate the change in free energy (ΔG) in each of the key steps of the NRR: 

               ∆G = ∆E + ∆EZPE - T∆S + ∆GU + ∆GpH             (S2) 

where ΔE represents the change of reaction energy, ΔEZPE represents the change of zero-point 

energy, and ΔS represents the change of entropy. T stands for the temperature of 298.15 K. 

Zero-point energy and entropy can be obtained from vibration frequency calculations, where 

data for gas phase frequency molecules come from the National Institute of Standards and 

Technology (NIST) database. ΔGU represents the effect of applied electrode potential. The 

concentration sum of H+ contribution to ΔGpH can be calculated by the following formula: 

               ∆GpH = 2.303 × κBT × pH                      (S3) 

where kB is the Boltzmann constant and pH is set to zero to simulate acidic conditions. 

The catalytic performance was evaluated by theoretical limit potential (UL) 

                   UL = (
-∆Gmax

e
)                            (S4) 

where ΔGmax represents the highest positive ΔG of the potential-determining step in the six-

electron step of NRR. 
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Note S3. Calculation of ΔEb and Eform.  

 Consequently, the stability was systematically evaluated according to the following 

formulas: 

               Ebind = ETM@g-C16N5
− Eg-C16N5

− ETM
DFT                   (S5) 

              Eform = ETM@g-C16N5
− Eg-C16N5

− ETM
exp

                   (S6) 

                Ecoh= (ETM-bulk-nETM
DFT)/n = ETM

exp
−ETM

DFT                 (S7) 

                      ∆Eb = Ebind - Ecoh                             (S8) 

where ETM@g-C16N5
, Eg-C16N5

, ETM
DFT, and ETM-bulk denote the energies of TM@g-C16N5, g-

C16N5, single TM, and the TM bulk, respectively; n represents the number of TM atoms, and 

Ecoh refers to the cohesive energy of the TM atoms. 
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Note S4. Electrochemical durability of TM@g-C16N5. 

Carbon/nitrogen-based catalysts employed in nitrogen reduction reactions (NRR) 

commonly experience electrochemical decomposition phenomena that involve reduction and 

oxidation reactions. Specifically, these reactions entail N + 3H++ 3e
-
→NH3(g) , C + 

H2O → CO(g) + 2H++ 2e
- , and N + H2O → NO(g) + 2H+ + 2e

-
. We use thermodynamic 

calculation methods to evaluate the likelihood of substrate decomposition 2 to determine the 

potential of carbon/nitrogen-based catalysts to suffer degradation under electrochemical 

conditions. This approach provides a more detailed and academic approach. According to Fig. 

S21, we observed that g-C16N5 was degraded into ammonia (NH3), carbon monoxide (CO), 

and nitrogen oxides (NO). The degradation process of g-C16N5 can be described as follows: 

        C16N5 + 3(H++ e-)→C16N4 + NH3(g)                   (S9) 

                   C16N5 + H2O→C15N5 + CO(g) + 2(H+ + e-)              (S10) 

               C16N5 + H2O → C16N4 + NO(g) + 2(H+ + e-)                 (S11) 

the potential Ud was required to drive the decomposition to release CO/NO by 

                            Ud = ∆Gd/2e                              (S12) 

while that to release NH3 can be obtained by 

                                Ud = ∆Gd/3e                           (S13) 
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Note S5. Synthetic feasibility of Mo@g-C16N5 in experiment. 

For the synthesis of single-atom catalysts (SACs), wet chemistry method is a very 

promising way to achieve highly dispersed single atoms 3. Based on previous research 4, we 

selected MoCl2 as the metal precursor and evaluated the feasibility of preparing Mo@ g-

C16N5 using first-principles calculations. We calculated in detail the energy changes along the 

proposed pathway (see Fig. S21). The specific reaction steps are as follows: 

          MoCl2 + *→MoCl2*  (step 1)                              (S14) 

          MoCl2* + 2H3O
+
+ 2e-→Mo* + 2H2O∙HCl  (step 2)             (S15) 

Mo*+ MoCl2→Mo*MoCl2  (step 3)                         (S16) 

Mo*MoCl2+ 2H3O
+
+ 2e-→Mo*Mo + 2H2O∙HCl  (step 4)        (S17) 

where * is g-C16N5. 
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Note S6. Calculations for the GBR model. 

The best performing Gradient Boosted Regression (GBR) model is an integrated machine 

learning algorithm that is generated by integrating multiple weak regression trees 5, 6. Given a 

set of training samples D = {(x1, y1), (x2, y2), ..., (xn, yn)} where the number of leaf nodes in 

each regression tree is J. We partition the input data into J disjoint regions and define each 

regression tree as tm(x). The training objective of the GBR is to minimize a loss function L, 

and empirically minimize the risk by determining the parameters of the decision tree θm. 

 θm = ∑ L(n
i=1θm

argmin
y

i
,f(m-1)(xi) + tm(xi)                    (S18) 

The GBR training procedure is as follows: 

(a) Initialize the regression tree function f0(x). 

(b) Train the GBR in the gradient descent direction and compute the negative gradient 

value of the loss function as an estimate of the residuals. At the mth iteration, the GBR 

generates a regression tree function to fit the residuals and updates the current function fm(x). 

(c) The final regression model is a weighted sum of several weak regression trees, defined 

as follows: 

                     fM(x) = ∑ t(x, θm)M
m=1                     (S19) 
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Note S7. Calculation of the RFR model. 

Random Forest Regression (RFR) model is an integrated machine learning algorithm that 

generates powerful regression models by integrating multiple decision trees 7, 8. Given a set of 

training samples D = {(x1, y1), (x2, y2), ..., (xn, yn)}, each decision tree is constructed with 

randomly drawn subsamples from the training samples and trained on these subsamples. 

The training objective of RFR is to improve the generalization ability of the model by 

reducing the prediction error. The specific computational process is as follows: 

(a) Initialization: Define the number N of trees to be constructed. 

(b) Constructing trees: 

1. For the kth tree, randomly draw a subsample set Dk with put-back from the training 

sample set. 

2. Use the subsample set Dk to construct the decision tree Tk. The split selection for each 

node selects the best split from a random subset of features to increase the diversity of the 

model. 

(c) Integrated prediction: the predictions from all trees are averaged to obtain the final 

regression prediction model f(x): 

                        f(x) = 
1

N
∑ Tk(x)N

k=1                          (S20) 
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Note S8. Calculation of SVR model. 

Support Vector Regression (SVR) is a regression analysis algorithm based on Support 

Vector Machine (SVM). Given a set of training samples D = {(x1, y1), (x2, y2), ..., (xn, yn)}, 

SVR aims to find a regression function f(x) = w⋅x + b that keeps most of the data points within 

the error ϵ while keeping the model simple 9.  

The goal of SVR is to minimize the following equation: 

                 min
w,b

1

2
||w||

2 + c ∑ max(0,|y
i
-(w∙xi+b|-ϵ)n

i=1                (S21) 

SVR training process: (a) Initialize parameters: choose the regularization parameter C and 

the error threshold Є. 

(b) Construct the optimization problem: Convert the regression problem into a convex 

optimization problem by introducing relaxation variables. 

(c) Solve the optimization problem: Use an algorithm (e.g., SMO algorithm) to solve for 

the optimal regression function parameters w and bias b. 

(d) Construct the regression function: obtain the final regression model f(x). 

The final regression model for SVR is: 

                      f(x) = ∑ (α
i
-αi

*n
i=1 )K(xi,x) + b                   (S22) 

where αi and αi∗ are the Lagrange multipliers of the support vectors, K(xi,x) is the kernel 

function, and b is the bias term. SVR obtains a regression model with good generalization 

ability by optimizing so that most of the data points are within Є and controlling the model 

complexity. 
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Note S9. Calculation of the ETR model. 

Extreme Random Trees (ETR) is an integrated learning algorithm that performs regression 

prediction by constructing multiple completely randomized decision trees 10. Given a training 

sample set D = {(x1, y1), (x2, y2), ..., (xn, yn)}, ETR splits the nodes by randomly selecting 

features and thresholds. 

ETR training process: (a) Initialization: define the number N of trees to be constructed. 

(b) Construct each tree: 1. For the kth tree, randomly select a subsample set Dk from the 

training sample set. 2. 

2. At each node, randomly select a feature and a threshold for splitting. 

3. Repeat the process until a preset tree depth is reached or the number of samples in a 

node is less than a preset value. 

(c) Integrated prediction: average the prediction results from all trees to obtain the final 

regression prediction model f(x). 

                      f(x) = 
1

N
∑ Tk(x)N

k=1                        (S23) 

where Tk(x) is the prediction of the kth tree. the final regression model of ETR is obtained by 

averaging the predictions of all decision trees. 
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Note S10. Calculation of the SISSO model. 

Sure Independence Screening and Sparsifying Operator (SISSO) is a sparse regression 

method that combines symbolic regression with compressed sensing for selecting physically 

interpretable and predictive features from high-dimensional feature space. Its core 

computational method consists of the following steps: 

1. Feature space construction 

First, a set of initial basic features (primary features) is defined, which represent the 

relevant attributes in the fields of physics, chemistry, and so on. Then, a series of symbolic 

operators (e.g., addition, multiplication, exponentiation, logarithm, etc.) are used to generate 

complex derived features to extend the feature space through multiple iterative operations. The 

generated feature space contains possible nonlinear combinations and is denoted as F= {f1, 

f2, ..., fN} where N is the number of candidate features generated by mathematical operations 

11.  

2. Sure Independence Screening (SIS) 

With such a large feature space, SIS is used to screen features by their correlation with 

the target variable. In this process, all features are ranked based on their Pearson correlation 

coefficients with the target variable and only the top M features that are most relevant to the 

target are retained to form a sparse feature subspace. This step significantly reduces the number 

of features while retaining the features that are most likely to influence the predictive models 

11.  

3. Sparsifying Operator (SO) 
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After filtering out the relevant features, SISSO further selects features through Sparsifying 

Operator (SO). Specifically, L0 regularized regression is used to solve the following 

optimization problem: 

min
𝛽

||𝑦 − 𝐷𝛽||2 + 𝜆||𝛽||0                (S24) 

where, y is the target attribute, D is the feature matrix, β is the linear regression coefficient, and 

λ is the regularization parameter to control sparsity 11. By determining the optimal combination 

of features and model dimensions through cross-validation, SISSO finally selects a sparse 

linear model that can predict the target attribute well and has high interpretability. 

4. Model validation and optimization 

Models are evaluated through cross-validation (e.g., leave-one-out or other methods) to 

ensure the generalization ability of the model on different datasets. In multidimensional 

regression or classification problems, SISSO can select the best dimensional characterizer 

based on the validation error. For classification tasks, SISSO constructs multi-hyperplane 

models to classify different classes by methods such as Support Vector Machines (SVMs) 12.  
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S2. Screening of highly stable and active NRR catalysts for TM@g-C16N5 

To create single-atom catalysts with exceptional stability and activity, a selection of 27 

TM atoms was anchored on a g-C16N5 substrate with a 2 × 2 × 1 supercell (a = b = 12.22 Å) 

(Fig. S1a) to investigate the structure-activity relationship. The sufficiently large hexagonal 

lattice of g-C16N5 ensures adequate spacing between the TM atoms, thereby minimizing 

interactions between periodically positioned TM atoms, as achieved in the TM@g-C16N5 

configuration. Fig. S1b reveals that N2 reduction can occur via two distinct adsorption models 

encompassing the distal, alternating, enzymatic, and consecutive pathways, with the NRR 

activity typically assessed by the limiting potential (UL), the minimum required to initiate the 

NRR process. Given the intrinsic complexity of the NRR, the formulation of robust screening 

descriptors is paramount, prompting the development of a 'Five-Step' strategy, as detailed 

below (Fig. S1c): firstly, SACs should demonstrate high thermodynamic stability; secondly, 

effective N₂ activation must be achieved, signaled by a ΔG*N₂ value below -0.10 eV; thirdly 

and fourthly, the ΔG*N₂-*N₂H and ΔG*NH₂-*NH₃ values lower than 0.98 eV (consistent with Ru 

(0001)) 13; finally, the UL of the NRR surpasses that of the competing HER by a minimum of -

0.5 volts 14, 15.  

In SACs, the propensity of dispersed metal atoms to form clusters, driven by the high 

surface energy of their supports, necessitates an evaluation of their stability and feasibility 

through the assessment of the energy difference (ΔEb) and formation energy (Eform) (see Note 

S3), respectively. A negative ΔEb indicates a thermodynamic preference for TM atoms to 

remain dispersed on the g-C16N5 substrate rather than forming clusters, whereas a positive ΔEb 

implies that single TM atoms could achieve stability on the substrate if the aggregation barrier 
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is sufficiently high to inhibit clustering, thereby ensuring the kinetic stability of the SACs 

(Specific data in Table S1). However, it should be noted that the values of Eform and ΔEb can 

be slightly larger than zero in practical applications, because the migration of TM atoms needs 

to overcome a high energy barrier 16. Overall, Fig. S1d demonstrates that all 27 structures 

exhibit robust interatomic interactions that resist dissociation, demonstrating a clear energetic 

preference for dispersed deposition of TM atoms on g-C16N5 over clustering, thereby marking 

them as compelling subjects for future exploration. Meanwhile, the strong interaction between 

the TM atoms and the g-C16N5 framework, as demonstrated by Bader charge analysis, is crucial 

for preventing the aggregation of TM atoms. Consequently, to further elucidate the stability of 

TM@g-C16N5, we decomposed the matrix into three distinct components: the TM atoms, the 

N4 unit bonded to the TM atoms, and the remaining g-C16N5 moiety, facilitating a 

comprehensive analysis of charge transfer among these parts. The Bader charge analysis (Fig. 

S2) indicates that each TM atom acquires a positive charge through electron transfer to the 

nitrogen atoms. The initial decrease in the number of electrons transferred with rising atomic 

number within each period can be attributed to the growing electron affinity in the TM-d 

orbitals, where the progressively fewer empty orbitals function as increasingly potent electron 

acceptors, whereas the subsequent decline in transferred charge for later TM atoms is due to 

the relatively high occupancy of their d-orbitals. The charge transfer scenarios presented in 

Figs. S3–S5 elucidate the interactions described above, wherein the resulting positively 

charged TM atoms emerge as crucial centers for adsorption and activation throughout the NRR 

process. 

Three possible initial configurations for N2 adsorption and activation on TM@g-C16N5, 
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as shown in Fig. S6, were considered, with the corresponding free energies of N2 adsorption 

(ΔG*N₂) compared in Fig. S1e and the associated TM-N bond lengths detailed in Table S2. As 

shown in Fig. S1e and Table S2, based on criteria 1 and 2, we selected 10 catalysts (TM = Ti, 

V, Nb, Mo, Ru, Hf, Ta, W, Re, and Os) for further investigation. Following criteria 3 and 4, Nb, 

Ru, Hf, Ta, W, Re and Os are excluded from consideration, as these materials are ineffective 

in catalyzing the conversion of N₂ into N₂H or NH₂ into NH₃ (Figs. S1f-h). As illustrated in Fig. 

S1i, although the PDS for Ti and Mo is located in the final stage of the deammoniation process 

and for V in the initial step of hydrogenation, all three catalysts meet the screening criteria and 

are viable candidates. Given that the HER is the primary competing side reaction during the 

NRR, we ultimately assess the NRR selectivity based on the difference in limiting potentials 

between NRR and HER (UL(NRR)-UL(HER) > -0.5 V) 14, 15, only Mo@g-C16N5 met the screening 

criteria (Fig. S1j). 
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Fig. S1. (a) Structural arrangement of the transition metal (TM) embedded within the central 
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cavity, coordinated by four nitrogen atoms, presented in both top and side views of the TM@g-

C16N5 catalyst, alongside a depiction of 27 potential TM atoms on the right. (b) A detailed 

account of the distal, alternating, consecutive, and enzymatic mechanisms underlying NRR on 

TM@g-C16N5. (c) A conceptual "Five-Step" strategy proposed for the efficient screening of 

potential NRR catalysts. (d) A comprehensive overview and summary illustrating the stability 

profiles, including Eb, Ef and ∆Eb, for TM@g-C16N5. (e) Computed Gibbs free energy for 

N2 adsorption on TM@g-C16N5, comparing end-on and side-on adsorption modes. (f)/(g) The 

evolution of Gibbs free energy associated with the first hydrogenation step 

( *N2+H++e-→ *NNH/ *NN+H++e-→ *NNH) of adsorbed N2 in end-on/side-on orientation. (h) 

Gibbs free energy change corresponding to the final deamination step on TM@g-C16N5 

( *NH2 + H+ + e-→ *NH3). (i) A synopsis of the limiting potential (UL) and the key potential-

determining step for TM@g-C16N5 catalysts (TM = Ti, V, Mo). j) Evaluation of NRR selectivity 

for TM@g-C16N5, based on a comparative analysis of the limiting potentials for NRR and HER. 
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Fig. S2. Bader charge analysis highlighting the charge distribution across different regions of 

TM@g-C16N5, where positive values indicate electron acquisition and negative values reflect 

electron disappearance. 
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Fig. S3. The differential charge density plots of the TM@g-C15N6 matrix (from Sc to Zn), with 

yellow indicating charge accumulation and cyan representing charge depletion, where the top 

view and side view are given, corresponding values for the isosurfaces are marked in the upper 

right corner.  
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Fig. S4. The differential charge density plots of the TM@g-C15N6 matrix (from Y to Cd), with 

yellow indicating charge accumulation and cyan representing charge depletion, where the top 

view and side view are given, corresponding values for the isosurfaces are marked in the upper 

right corner. 
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Fig. S5. The differential charge density plots of the TM@g-C15N6 matrix (from Hf to Au), with 

yellow indicating charge accumulation and cyan representing charge depletion, where the top 

view and side view are given, corresponding values for the isosurfaces are marked in the upper 

right corner. 
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Fig. S6. Three adsorption modes for N2 molecules on TM@g-C16N5: (a) physisorption; (b) end-

on; (c) side-on. 
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Fig. S7. The left panel denotes the RMSE and R2 results of the four machine learning 

algorithms in the training and test sets for binding energy (a), end-on N2-adsorption free energy 

(c), and side-on NN-adsorption free energy (e). For the right panel, a comparison of the DFT 

calculated and corresponding optimal algorithms shown in the left panel predicted binding 

energy (b), end-on N2-adsorption free energy (d), and side-on NN-adsorption free energy (f). 
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Fig. S8. The left panel denotes the RMSE and R2 results of the four machine learning 

algorithms in the training and test sets for the Gibbs free energies of the first end-on step of 

hydrogenation (a), the first side-on step of hydrogenation (c), and the last step of hydrogenation 

(e). For the right panel, a comparison of the DFT calculated and corresponding optimal 

algorithms shown in the left panel predicted the Gibbs free energies of the first end-on step of 

hydrogenation (b), the first side-on step of hydrogenation (d), and the last step of hydrogenation 

(f).  
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Fig. S9. RMSE and R² performance of four ML algorithms on training and test sets in HER (a), 

alongside a comparison of DFT and GBR-predicted HER overpotentials (b). (c) Predicted 

feature importance from the GBR algorithm in HER. (d) Comparison between DFT-calculated 

and SISSO-predicted overpotentials for HER. 
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Fig. S10. Schematic representation of N2 bonding to transition metals, highlighting donation 

and back-donation in both end-on (a) and side-on (b) orientations. 
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Fig. S11. Partial density of states diagrams for the 3d orbitals of the TM atoms on the TM@g-

C16N5 catalysts prior to or after N₂ adsorption (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn). 
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Fig. S12. Partial density of states diagrams for the 4d orbitals of the TM atoms on the TM@g-

C16N5 catalysts prior to or after N₂ adsorption (TM = Nb, Mo, Ru, Rh, Pd, Ag, and Cd). 

 

 

 

 

 

 

 

 



S29 

 

 

Fig. S13. Partial density of states diagrams for the 5d orbitals of the TM atoms on the TM@g-

C16N5 catalysts prior to or after N₂ adsorption (TM = Hf, Ta, W, Re, Os, Ir, Pt and Au). 
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Fig. S14. (a) Reaction energy profile for the consecutive N2 reduction pathway on Mo@g-

C16N5. (b) Reaction energy profile of the NRR along the consecutive pathway, featuring H⁺ 

addition to the the Mo@g-C16N5 catalyst when *NH2 intermediate exists. 
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Fig. S15. Structures of key NRR intermediates on Mo@g-C16N5 along the most favorable distal 

pathway, with H⁺ added to the Mo atom in the sixth step. 
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Fig. S16. Structures of key NRR intermediates on Mo@g-C16N5 along the most favorable 

consecutive pathway, with H⁺ added to the Mo atom in the sixth step. 
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Fig. S17. (a) Structure diagrams of the protonation process of N2 along the distal pathway, 

incorporating H⁺ regulation, alongside the corresponding spin density (b) and differential 

charge density diagrams (c). 
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Fig. S18. (a) Structure diagrams of the protonation process of N2 along the consecutive pathway, 

incorporating H⁺ regulation, alongside the corresponding spin density (b) and differential 

charge density diagrams (c). 
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Fig. S19. Variation of total energy and temperature over time during the AIMD simulation at 

300 K. 
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Fig. S20. Dissociation energy required for Mo@g-C16N5 substrate during NRR, carbon 

oxidation (COR), and nitrogen oxidation (NOR) reactions. 
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Fig. S21. Schematic of the designed synthetic route for Mo@g-C16N5, where Cl atoms are 

represented in navy blue, O atoms are represented in red, H atoms are represented in light pink 

and other atomic colors as above. 
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Fig. S22. Energy distribution along the synthetic route depicted in Fig. S21, with S0 

representing the initial state of g-C16N5. 
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Fig. S23. pCOHP analysis of the Mo-N bond for N₂ adsorption on the Mo@g-C16N5 catalyst 

under charge states Δq = +1, 0, and −1 e, corresponding to electrode potentials of U = −1.11 V, 

−0.44 V, and +0.36 V vs. SHE, respectively. From left to right, the Figs. illustrate the −pCOHP 

of the Mo-N bond, followed by the contributions from the Co(dyz)-N(p), Co(dz²)-N(p), and 

Co(dxz)-N(p) orbitals, highlighting the orbital interactions that govern the bonding 

characteristics. 
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Table S1. Formation energy (Eform), binding energy (Ebind), cohesive energy (Ecoh), and energy 

difference (ΔEb = Ebind - Ecoh) of transition metal atoms anchored on g-C16N5. 

Metals Eform (eV) Ebind (eV) Ecoh (eV) ΔEb (eV) 

Sc -3.79 -8.01 -4.22 -3.79 

Ti -3.16 -8.63 -5.47 -3.16 

V -3.05 -8.41 -5.37 -3.05 

Cr -3.53 -7.58 -4.05 -3.53 

Mn -3.54 -7.41 -3.87 -3.54 

Fe -3.67 -8.06 -4.39 -3.67 

Co -3.41 -8.61 -5.20 -3.41 

Ni -3.62 -8.47 -4.85 -3.62 

Cu -2.48 -5.97 -3.49 -2.48 

Zn -3.13 -4.20 -1.07 -3.13 

Y -1.69 -5.87 -4.19 -1.69 

Zr -1.50 -7.80 -6.30 -1.50 

Nb -0.72 -7.71 -6.99 -0.72 

Mo -0.48 -6.84 -6.36 -0.48 

Ru -1.44 -9.06 -7.63 -1.44 

Rh -2.73 -8.61 -5.88 -2.73 

Pd -2.99 -6.73 -3.75 -2.99 

Ag -0.57 -3.09 -2.52 -0.57 

Cd -0.82 -1.56 -0.73 -0.82 

Hf -1.85 -8.34 -6.49 -1.85 

Ta -0.75 -8.94 -8.19 -0.75 

W 0.13 -8.77 -8.90 0.13 

Re 0.03 -9.01 -9.04 0.03 

Os -0.60 -8.95 -8.35 -0.60 

Ir -2.31 -9.57 -7.27 -2.31 

Pt -3.19 -8.79 -5.60 -3.19 

Au -1.08 -4.12 -3.04 -1.08 
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Table S2. The adsorption free energies of N2 molecules on the surface of TM atoms in both 

end-on (left) and side-on (right) attachment modes, along with the TM-N and N-N bond lengths 

following N2 adsorption, are summarized, where the symbol “/” denotes an unstable structure 

that fails to form a stable adsorption configuration. 

end-on side-on 

Atom ΔE*N2 

(eV) 

TM-N 

(Å) 

N-N 

(Å) 

ΔE*N2 

(eV) 

TM-N 

(Å) 

TM-N 

(Å) 

N-N 

(Å) 

Sc -0.06 2.41 1.12 0.30 3.11 3.42 1.12 

Ti -0.77 2.02 1.14 -0.71 2.11 2.11 1.18 

V -0.49 1.93 1.14 0.10 2.20 2.18 1.15 

Cr 0.38 2.46 1.12 0.90 2.11 2.12 1.16 

Mn 0.33 2.16 1.12 0.42 2.96 2.95 1.12 

Fe 0.23 1.97 1.13 1.03 2.08 2.09 1.15 

Co 0.40 1.91 1.12 0.39 3.11 3.42 1.11 

Ni 0.37 2.93 1.11 0.42 3.25 3.20 1.11 

Cu 0.37 2.87 1.11 0.40 3.26 3.23 1.11 

Zn 0.40 3.00 1.11 0.43 3.25 3.22 1.11 

Y \ \ \ \ \ \ \ 

Zr \ \ \ \ \ \ \ 

Nb -0.63 1.98 1.15 -1.45 2.12 2.11 1.21 

Mo -0.64 1.94 1.15 -0.71 1.98 1.98 1.25 

Ru -0.47 1.83 1.14 0.47 2.13 2.13 1.16 
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Rh 0.80 2.13 1.12 0.47 3.33 3.34 1.11 

Pd 0.38 3.11 1.11 0.43 3.37 3.43 1.11 

Ag 0.41 3.06 1.11 0.47 3.41 3.29 1.11 

Cd -0.03 3.44 1.11 -0.07 3.70 3.76 1.11 

Hf -0.39 2.12 1.13 -1.91 2.23 2.23 1.19 

Ta -1.08 2.00 1.15 -1.30 2.10 2.13 1.22 

W -1.02 1.93 1.16 -1.11 1.94 1.94 1.29 

Re -0.59 1.87 1.15 -0.36 1.97 1.97 1.25 

Os -0.46 1.84 1.15 0.57 2.10 2.10 1.18 

Ir 1.01 2.06 1.13 0.40 3.35 3.73 1.11 

Pt 0.41 3.18 1.11 0.41 3.30 3.62 1.11 

Au 0.36 3.22 1.11 0.44 3.35 3.38 1.11 
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Table S3. The eigenvalues attached to the atomic properties, including the electronegativity 

(χ), atomic mass (m), atomic radius (R, in pm), ionic radius (r, in pm), the first ionization energy 

(IP, in kJ/mol), first electron affinity (Ea, in kJ/mol), atomic number (n), s-electron count (Ns), 

d-electron count (Nd) and outermost electron number (Xi).  

materials χ m R r IP EA n Ns Nd Xi 

Sc 1.36 44.96 162 162 633.09 18.14 21 2 1 3 

Ti 1.54 47.87 147 86 658.81 7.62 22 2 2 4 

V 1.63 50.94 134 79 650.91 50.66 23 2 3 5 

Cr 1.66 52.00 128 81 652.87 64.26 24 1 5 6 

Mn 1.55 54.94 127 66 717.27 -50.00 25 2 5 7 

Fe 1.83 55.85 126 63 762.47 14.57 26 2 6 8 

Co 1.88 58.93 125 38 760.40 63.87 27 2 7 9 

Ni 1.91 58.69 124 55 737.14 111.54 28 2 8 10 

Cu 1.90 63.55 128 60 745.48 119.16 29 1 10 11 

Zn 1.65 65.38 134 60 906.40 -58.00 30 2 10 12 

Y 1.22 88.91 180 90 599.88 29.62 39 2 1 3 

Zr 1.33 91.22 160 59 640.07 41.10 40 2 2 4 

Nb 1.60 92.91 146 72 652.13 88.38 41 1 4 5 

Mo 2.16 95.95 139 69 684.31 72.17 42 1 5 6 

Ru 2.20 101.07 134 68 710.18 101.31 44 1 7 8 

Rh 2.28 102.91 134 67 719.67 109.70 45 1 8 9 

Pd 2.20 106.42 137 64 804.39 54.23 46 0 10 10 

Ag 1.93 107.87 144 100 730.99 125.62 47 1 10 11 

Cd 1.69 112.41 149 78 867.77 -68.00 48 2 10 12 

Hf 1.30 178.49 159 58 658.52 1.35 72 2 2 4 

Ta 1.50 180.95 146 72 728.42 31.07 73 2 3 5 

W 2.36 183.84 139 66 758.76 78.76 74 2 4 6 

Re 1.90 186.21 137 63 755.82 14.47 75 2 5 7 

Os 2.20 190.23 135 63 814.16 106.13 76 2 6 8 

Ir 2.20 192.22 136 68 865.18 150.88 77 2 7 9 

Pt 2.28 195.08 139 80 864.39 205.32 78 1 9 10 

Au 2.54 196.97 144 137 890.12 222.75 79 1 10 11 
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Table S4. A set of five descriptors, generated by SISSO, was designed to quantitatively 

describe the energy values. 

Target 

values 
Descriptors 

E
*N2

 𝜑E∗𝑁2
= 115.63×

Nd

R
ln(χ∙Nd)

+7.2
(EA∙NS)

3

R∙Xi

×10-5-2.9
m

Xi

∙lnEA2×10-3-4.3χ∙Xi∙r∙NS
3×10-5-0.59×

χ
n

ln
m
r

-1.81 

E
*NN

 𝜑𝐸∗𝑁𝑁
= -52.69

√IP

r-2R
-43.27

EA∙n

Xi
3

IP
-0.49

EA
n

ln
m
r

+0.45

EA
r

ln
m
r

+1.38
(
EA
Xi

)
3

r
EA

×10-2-6.98 

E
*N2H-*N

2

 φ
E

*N2H-*N2

= 1.23√
r∙Nd

n+Ns

+3.12(
IP∙EA

r∙Nd

)

2

×10-5-71.84
(lnχ)

2

χ3
+4.1(

Nd
3∙χ

EA
)

3

×10-5-1.06×10-3
(χ∙Nd)

3

EA
Nd

+1.04 

E*NNH-NN φ
E

*N2H-*N2

= 1.23√
r∙Nd

n+Ns

+3.12(
IP∙EA

r∙Nd

)

2

×10-5-71.84
(lnχ)

2

χ3
+4.1(

Nd
3∙χ

EA
)

3

×10-5-1.06×10-3
(χ∙Nd)

3

EA
Nd

+1.04 

E
*NH3

-*NH2
 φE

*NH3-*NH2
= 3.93

n

EA
IP

×10-4+1.34
n∙lnχ

Xi
2

-4.30
Nd

3∙χ∙EA

r
×10-4+82.14

EA
r

(χ∙Xi)
2

+0.38
R-r

(n∙Nd)
3

-1.39 
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Table S5. The magnetic moments (in μB) of TM@g-C16N5, examined both before and after N2 

adsorption, are represented using the following notation: "*" for TM@g-C16N5, "
*N2" for N2 

adsorbed onto TM atoms in an end-on configuration, "*NN" for N2 adsorbed in a side-on 

configuration, and "\" to indicate the absence of N2 adsorption. 

materials * *N2 
*NN 

Sc 0.58 0.51 \ 

Ti 2.00 1.19 0.12 

V 3.01 3.00 \ 

Cr 3.99 \ \ 

Mn 0.61 \ \ 

Fe 1.90 \ \ 

Co -0.50 \ \ 

Ni 0.00 \ \ 

Cu -0.91 \ \ 

Zn 0.00 \ \ 

Nb 1.37 0.82 1.46 

Mo 3.49 1.92 0.00 

Ru 1.50 0.00 \ 

Rh 0.50 \ \ 

Pd 0.00 \ \ 

Ag 0.50 \ \ 

Cd 0.00 \ \ 

Hf 1.94 0.04 0.50 

Ta 1.36 0.93 0.50 

W 2.50 2.00 0.01 

Re 1.04 -1.00 0.20 

Os 1.86 0.00 \ 

Ir 0.50 \ \ 

Pt 0.00 \ \ 

Au 0.00 \ \ 
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Table S6. Quadratic relationship between energy (E) and applied electrochemical potential (U) 

for bare Mo@g-C16N5 and NRR intermediates. 

Reaction intermediations Energy (E) R2 

* E = -0.65U2-0.47U-384.42 0.998 

*N2 E = -0.71U2-0.45U-402.37 0.996 

*NNH E = -0.65U2-0.46U-405.94 0.992 

*NNH2 E = -0.71U2-0.87U-410.35 0.998 

*N E = -0.52U2-0.10U-394.60 0.991 

*NH E = -0.66U2-0.59U-398.74 0.998 

*NH2 E = -0.75U2-0.87U-402.42 0.998 

*NH2+H E = -0.65U2-0.62U-405.53 0.992 

*NH3 E = -0.68U2-1.18U-406.33 0.998 

*NH3+H E = -0.78U2-1.07U-409.70 0.990 
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Table S7. Mo−N bond length (L(Mo−N)), adsorption energy (Eads) across varying U vs SHE 

potentials for N₂ on Mo@g-C16N5, and the associated Bader charge (δe) on the adsorbed N2. 

Spin-up and spin-down ICOHP values of the Mo−N bond, with detailed contributions from 

the five d orbitals (dxy, dyz, dz², dxz, and dx²−y²). 

U VS SHE 1.02  0.72  0.46  0.07  -0.46  -0.68  -1.16  -1.43  -1.79  

L(Mo-N) 1.99  1.98  1.96  1.95  1.94  1.93  1.91  1.90  1.89  

Eads -1.45  -1.31  -1.33  -1.37  -1.36  -1.43  -1.46  -1.48  -1.58  

δe -0.13  -0.21  -0.28  -0.32  -0.35  -0.44  -0.53  -0.56  -0.60  

ICOHP Mo-N 

total 

up -2.95  -2.95  -2.93  -2.91  -2.88  -2.87  -2.84  -2.80  -2.77  

down -2.48  -2.51  -2.55  -2.60  -2.62  -2.62  -2.67  -2.73  -2.79  

ICOHP 

Mo(dxy)-

N(py)/N(pz)/N(p

x)  

up 0/0/ 0  0/0/0  0/0/0  0/0/0  0/0/0  0/0/0  0/0/0  0/0/0  0/0/0 

down 0/0/0  0/0/0  0/0/0  0/0/0  0/0/0  0/0/0  0/0/0  0/0/0  0/0/0 

ICOHP 

Mo(dyz)-

N(py)/N(pz)/N(p

x)  

up 
-  0.43 

/0 /0 

-

0.44/0/

0 

-

0.44/0/

0 

 -

0.44/0/

0 

-

0.44/0/

0 

-

0.45/0/

0 

-

0.44/0/

0 

-

0.44/0/

0 

-

0.43/0/

0 

down 

- 

0.23/0 / 

0 

 -

0.27/0/

0 

 -

0.31/0/

0 

 -

0.36/0/

0 

 -

0.38/0/

0 

 -

0.39/0/

0 

 -

0.40/0/

0 

-

0.42/0/

0 

-

0.44/0/

0 

ICOHP 

Mo(dz2)-

N(py)/N(pz)/N(p

x)  

up 
 0 /-

0.55/0 

 0/-

0.54/0 

 0/-

0.52/0 

 0/-

0.51/0 

 0/-

0.50/0 

 0/-

0.48/0 

 0/-

0.47/0 

 0/-

0.46/0 

 0/-

0.45/0 

down 
   0/-

0.53/0 

 0/-

0.52/0 

 0/-

0.51/0 

 0/-

0.36/0 

 0/-

0.49/0 

 0/-

0.47/0 

 0/-

0.46/0 

 0/-

0.45/0 

 0/-

0.44/0 

ICOHP 

Mo(dxz)-

N(py)/N(pz)/N(p

x)  

up 
 0/0 /-

0.45 

 0/0/-

0.47 

 0/0/-

0.47 

 0/0/-

0.48 

 0/0/-

0.48 

 0/0/-

0.49 

 0/0/-

0.49 

 0/0/-

0.49 

 0/0/-

0.48 

down 
 0/0/-

0.23  

 0/0/-

0.24 

 0/0/-

0.25 

 0/0/-

0.50 

 0/0/-

0.30 

 0/0/-

0.31 

 0/0/-

0.37 

 0/0/-

0.44 

 0/0/-

0.50 

ICOHP Mo(dx2-

y2)-

N(py)/N(pz)/N(p

x)  

up  0/0/0  0/0/0  0/0/0  0/0/0  0/0/0  0/0/0  0/0/0  0/0/0  0/0/0 

down  0/0/0  0/0/0  0/0/0  0/0/0  0/0/0  0/0/0  0/0/0  0/0/0  0/0/0 
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Table S8. The E-U relationship for the TM@g-C16N5 system, fitted using parameters Δq, EVASP, 

Ef, EFermi-Shift, U, and potential-dependent electrochemical energy (E), with a fixed Mo-N bond 

length of 1.64 Å, is expressed as E = -0.64U2-0.29U-400.99. 

Δq (e) EVASP (eV) Ef (eV) EFermi-Shift (eV) U (V VS. SHE) E (eV) 

-1.50 -392.93 -5.87 0.40 0.88 -401.74 

-1.00 -395.79 -5.53 0.40 0.54 -401.33 

-0.50 -398.50 -5.19 0.40 0.19 -401.10 

0.00 -400.97 -4.67 0.40 -0.33 -400.97 

0.50 -403.22 -4.33 0.40 -0.67 -401.06 

1.00 -405.33 -4.02 0.40 -0.97 -401.30 

1.50 -407.25 -3.65 0.40 -1.35 -401.79 
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Table S9. The E-U relationship for the TM@g-C16N5 system, fitted using parameters Δq, EVASP, 

Ef, EFermi-Shift, U, and potential-dependent electrochemical energy (E), with a fixed Mo-N bond 

length of 1.94 Å, is expressed as E = -0.64U2-0.43U-402.36. 

Δq (e) EVASP (eV) Ef (eV) EFermi-Shift (eV) U (V VS. SHE) E (eV) 

-1.50 -394.42 -5.72 0.40 0.72 -403.00 

-1.00 -397.24 -5.46 0.40 0.46 -402.70 

-0.50 -399.88 -5.06 0.40 0.06 -402.41 

0.00 -402.30 -4.54 0.40 -0.45 -402.30 

0.50 -404.50 -4.27 0.40 -0.72 -402.37 

1.00 -406.55 -3.84 0.40 -1.15 -402.71 

1.50 -408.40 -3.55 0.40 -1.45 -403.08 
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Table S10. The E-U relationship for the TM@g-C16N5 system, fitted using parameters Δq, 

EVASP, Ef, EFermi-Shift, U, and potential-dependent electrochemical energy (E), with a fixed Mo-

N bond length of 2.24 Å, is expressed as E = -0.62U2-0.57U-401.99. 

Δq (e) EVASP (eV) Ef (eV) EFermi-Shift (eV) U (V VS. SHE) E (eV) 

-1.50 -394.17 -5.57 0.40 0.57 -402.52 

-1.00 -396.92 -5.36 0.40 0.36 -402.28 

-0.50 -399.51 -4.93 0.40 -0.06 -401.98 

0.00 -401.86 -4.44 0.40 -0.55 -401.86 

0.50 -404.02 -4.17 0.40 -0.82 -401.93 

1.00 -405.98 -3.67 0.40 -1.33 -402.32 

1.50 -407.76 -3.39 0.40 -1.60 -402.67 
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Table S11. The E-U relationship for the TM@g-C16N5 system, fitted using parameters Δq, 

EVASP, Ef, EFermi-Shift, U, and potential-dependent electrochemical energy (E), with a fixed Mo-

N bond length of 2.54 Å, is expressed as E = -0.79U2-0.71U-401.36. 

Δq (e) EVASP (eV) Ef (eV) EFermi-Shift (eV) U (V VS. SHE) E (eV) 

-1.50 -393.69 -5.48 0.40 0.49 -401.92 

-1.00 -396.32 -5.12 0.40 0.12 -401.44 

-0.50 -398.84 -4.82 0.40 -0.17 -401.25 

0.00 -401.19 -4.59 0.40 -0.41 -401.19 

0.50 -403.42 -4.25 0.40 -0.74 -401.29 

1.00 -405.46 -3.88 0.40 -1.12 -401.58 

1.50 -407.30 -3.47 0.40 -1.53 -402.10 
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Table S12. The E-U relationship for the TM@g-C16N5 system, fitted using parameters Δq, 

EVASP, Ef, EFermi-Shift, U, and potential-dependent electrochemical energy (E), with a fixed Mo-

N bond length of 2.84 Å, is expressed as E = -0.70U2-0.60U-401.26. 

Δq (e) EVASP (eV) Ef (eV) EFermi-Shift (eV) U (V VS. SHE) E (eV) 

-1.50 -393.47 -5.73 0.40 0.74 -402.06 

-1.00 -396.22 -5.25 0.40 0.26 -401.48 

-0.50 -398.77 -4.89 0.40 -0.10 -401.22 

0.00 -401.12 -4.48 0.40 -0.51 -401.12 

0.50 -403.32 -4.25 0.40 -0.75 -401.19 

1.00 -405.35 -3.81 0.40 -1.18 -401.54 

1.50 -407.19 -3.48 0.40 -1.52 -401.97 
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Table S13. The E-U relationship for the TM@g-C16N5 system, fitted using parameters Δq, 

EVASP, Ef, EFermi-Shift, U, and potential-dependent electrochemical energy (E), with a fixed Mo-

N bond length of 3.14 Å, is expressed as E = -0.69U2-0.58U-401.24. 

Δq (e) EVASP (eV) EF (eV) EFermi-Shift (eV) U (V VS. SHE) E (eV) 

-1.50 -393.44 -5.74 0.40 0.74 -402.04 

-1.00 -396.22 -5.30 0.40 0.31 -401.52 

-0.50 -398.76 -4.89 0.40 -0.10 -401.20 

0.00 -401.11 -4.48 0.40 -0.52 -401.11 

0.50 -403.30 -4.25 0.40 -0.75 -401.18 

1.00 -405.35 -3.86 0.40 -1.14 -401.49 

1.50 -407.17 -3.45 0.40 -1.54 -401.99 
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Table S14. The E-U relationship for the TM@g-C16N5 system, fitted using parameters Δq, 

EVASP, Ef, EFermi-Shift, U, and potential-dependent electrochemical energy (E), with a fixed Mo-

N bond length of 3.44 Å, is expressed as E = -0.70U2-0.58U-401.23. 

Δq (e) EVASP (eV) Ef (eV) EFermi-Shift (eV) U (V VS. SHE) E (eV) 

-1.50 -393.42 -5.73 0.40 0.73 -402.02 

-1.00 -396.21 -5.31 0.40 0.32 -401.52 

-0.50 -398.74 -4.89 0.40 -0.10 -401.19 

0.00 -401.10 -4.48 0.40 -0.51 -401.10 

0.50 -403.30 -4.25 0.40 -0.74 -401.17 

1.00 -405.35 -3.87 0.40 -1.12 -401.47 

1.50 -407.18 -3.45 0.40 -1.55 -402.00 

 

 

 

 

 

 

 

 

 

 

 



S55 

 

Table S15. The E-U relationship for the TM@g-C16N5 system, fitted using parameters Δq, 

EVASP, Ef, EFermi-Shift, U, and potential-dependent electrochemical energy (E), with a fixed Mo-

N bond length of 3.74 Å, is expressed as E = -0.70U2-0.59U-401.23. 

Δq (e) EVASP (eV) Ef (eV) EFermi-Shift (eV) U (V VS. SHE) E (eV) 

-1.50 -393.43 -5.70 0.40 0.71 -401.98 

-1.00 -396.20 -5.30 0.40 0.31 -401.51 

-0.50 -398.73 -4.89 0.40 -0.11 -401.18 

0.00 -401.09 -4.48 0.40 -0.51 -401.09 

0.50 -403.29 -4.26 0.40 -0.74 -401.16 

1.00 -405.35 -3.89 0.40 -1.11 -401.46 

1.50 -407.17 -3.45 0.40 -1.54 -402.00 
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Table S16. The E-U relationship for the TM@g-C16N5 system, fitted using parameters Δq, 

EVASP, Ef, EFermi-Shift, U, and potential-dependent electrochemical energy (E), with a fixed Mo-

N bond length of 4.0 Å, is expressed as E = -0.73U2-0.63U-401.23. 

Δq (e) EVASP (eV) Ef (eV) EFermi-Shift (eV) U (V VS. SHE) E (eV) 

-1.50 -393.48 -5.58 0.40 0.58 -401.85 

-1.00 -396.18 -5.33 0.40 0.33 -401.51 

-0.50 -398.73 -4.90 0.40 -0.09 -401.18 

0.00 -401.09 -4.50 0.40 -0.49 -401.09 

0.50 -403.28 -4.25 0.40 -0.74 -401.16 

1.00 -405.35 -3.90 0.40 -1.10 -401.45 

1.50 -407.17 -3.46 0.40 -1.54 -401.99 
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