Supporting Information

Design of Multifunctional Gradient Double Coating Layer for Stable Thin Zinc Anode with High Depth of Discharge

Wenduo Zhang¹, Meijia Chen¹, Chuang Sun¹, Chao Lai,^a Yuxuan Zhu,^{*a} Minman Tong,^{*a}

¹ School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 201116, China. Email: yxzhu@jsnu.edu.cn; tongmm@jsnu.edu.cn

Supporting Figures and Tables

×400 ×1000 Figure S1. Image of the starch film under optical microscope.

Figure S2 The top-view SEM image of different anodes and the corresponding EDS mapping. (Red: Zn, Yellow: O, Blue: C. Scale bar: 5 μm)

Figure S3 Representative EDX spectra of bare Zn, Zn@SF, Zn@C, and Zn@C-SF.

Figure S4. SEM images of (a) Zn@GF and (b) Zn@C-GF anode after immersing in 2 м ZnSO₄ electrolyte for 8 hours.

Figure S5. Young's modulus of Zn@GF, Zn@C, and Zn@C-GF electrode surface layers.

Figure S6. SEM images of Zn@GF and Zn@C anodes after 20 cycles at 3 mA cm⁻², 3 mAh cm⁻².

Figure S7. SEM images of Zn@C-GF anodes and the corresponding EDS mapping after 20 cycles at 3 mA cm⁻², 3 mAh cm⁻². (Blue: C, Yellow: O, Purple: S, Rad: Zn. Scale bar: 2 μm.)

Figure S8. SEM of cross section and corresponding EDS images after 3 h zinc deposition on bare Cu.

Figure S9. The Zn²⁺ transference number of bare Zn and Zn@C-GF electrodes.

Anode	State	R _s (Ohm)	R _{ct} (Ohm)	
Bare Zn	Before polarization	0.80843	683.1	
	After polarization	0.72302	1072	
Zn@C-GF	Before polarization	1.587	375.6	
	After polarization	1.262	894	

Table S1. The fitting results of EIS curves in Figure S8a&b.

 t_+ was obtained from the DC polarization/AC impedance method. The Li||Li symmetric cell was polarized by a constant DC potential (V = 25 mV) until a steady state. The resistances and currents before and after polarization were measured as R_{bp} , R_{ap} , I_{bp} , and I_{ap} , respectively. t_+ was determined by the following equation:

$$t_{+} = \frac{V / I_{bp} - R_{bp}}{V / I_{ap} - R_{ap}}$$

Figure S10. Nyquist plots of the symmetric bare Zn, Zn@GF, Zn@C, and Zn@C-GF cells.

Figure S11. Coulombic efficiencies for the Zn plating/stripping process at 1 mA cm⁻², 1 mAh cm⁻².

Figure S12. CV curves of the symmetric bare Zn and Zn@C-GF cells.

Figure S13. Long-term galvanostatic cycling of the symmetric cells at the current density and capacity of 1 mA cm⁻², 1 mAh cm⁻² and 5 mA cm⁻², 5 mAh cm⁻².

Figure S14. The DOD_{Zn} of this work under different current densities and capacities.

The data related to the DOD are acquired from the followed equations:

$$DOD_{(\%)} = \frac{C_{actual, area}}{C_{theoretical, area}} \times 100\% = \frac{C_{actual, area}}{l \times \rho \times C_{theoretical, mass}} \times 100\%$$

Where $C_{theoretical, area}$ (mAh cm⁻²) is the theoretical areal capacity of Zn foils, $C_{actual, area}$ (mAh cm⁻²) is the actual areal capacity of the deposited/stripped Zn, ρ (g cm⁻³) and l (cm) are the density and thickness of Zn foils, respectively, $C_{theoretical, mass}$ (mAh g⁻¹) is the theoretical mass capacity of Zn foils. For example,

$$DOD_{(85\%)} = \frac{15 \ mAh \ cm^{-2}}{0.003 \ cm \times 7.14 \ g \ cm^{-3} \times 820 \ mAh \ g^{-1}} \times 100\% \approx 85\%$$

Figure S15. Cycling stability of bare Zn and Zn@C-GF symmetrical cells under 57% and 71% DOD_{Zn}.

Figure S16. Voltage profiles of the cell with bare Zn and Zn@C-GF anodes at 3C for 300th, 600th and 900th cycles.

Figure S17. Cycling performance of the Zn-V₂O₅ full cells at 5C.

Figure S18. The discharging/charging profiles of Bare Zn-V₂O₅ cells from 0.5C to 8C.

Figure S19. Long-term cycling performance of Zn@C-GF||V₂O₅ full cell with V₂O₅ mass loading of 7.8 mg cm⁻².

Anode	Current density (mA cm ⁻²) /Areal capacity (mAh cm ⁻²)	Life span (h)	Cumulative capacity (mAh cm ⁻²)	DOD (%)	Ref.	Year
Zn@C-GF	15/15	200	1500	85.4	This work	
	12.5/12.5	220	1375	71.2		-
	10/10	250	1250	56.9		
$PVDF\text{-}Sn@Zn^1$	10/10	200	1000	8.5	Nat. Commun.	2023
Sn@Zn-IP ²	2/1	700	700	0.9	Adv. Funct. Mater.	2022
Cu-Zn@Zn ³	1/3	450	225	10.3	Angew. Chem. Int. Ed.	2022
Zn@ZnS ⁴	2/2	200	200	34.3	Nano-Micro Lett.	2024
BR-Zn ⁵	10/5	238	1190	17.1	Angew. Chem Int. Ed.	2023
Zn/Sn ₍₂₀₀₎ ⁶	1/1	500	250	1.7	Adv.Mater.	2021
C_{flower}/Zn^7	5/2.5	150	375	1.7	Nano. Lett.	2022
Sn@NHCF ⁸	1/1	370	185	8	Sci. Adv.	2022
MXene10 [^] Zn ⁹	20/10	110	1100	85.4	Adv. Energy Mater.	2024
Zn@PFSA ¹⁰	1/1	800	400	5.6	ACS nano	2022
Cu NBs@NCFs-Zn ¹¹	5/2	250	625	25	Adv. Mater.	2022
Triple-gradient Zn ¹²	5/2.5	400	1000	25	Adv. Mater.	2023
TZNC@Zn ¹³	4/4	200	400	50	Angew. Chem. Int. Ed.	2022
	1/1	450	225	12.5		2022
$Zn\text{-}N_{3Py^{+}1Pr}\text{-}C@Zn^{14}$	1/7.5	500	250	50	Adv.Mater.	2024
Zn/CNT ¹⁵	5/2.5	110	275	35	Adv. Mater.	2019
PSN Zn ¹⁶	10/10	250	1250	60	Adv. Funct. Mater.	2021
PC-sat ¹⁷	2.5/10	100	125	68	J. Am. Chem. Soc.	2022
$Zn_{0.73}Al_{0.27} @Zn^{18}$	2/2	500	500	1.7	Nano. Lett.	2022
$Zn @Zn F_2{}^{19}$	1/1	800	400	17	Adv. Mater.	2021
	0.5/1	500	125	1.7		2021
ZF@C-TiO2 ²⁰	1/1	450	225	5	Nat. Commun.	2020
	2/2	280	280	10		2020
3D Ni-Zn ²¹	5/2	200	500	40.6	Adv. Energy Mater.	2021
SDF ²²	3/4.5	250	375	45	Adv. Energy Mater.	2021

Table S2. Comparison of the symmetric cell of this work with recent publications.

Reference

- 1 Q. Cao, Y. Gao, J. Pu, X. Zhao, Y. Wang, J. Chen and C. Guan, Nat Commun, 2023, 14, 641.
- 2 Q. Cao, Z. Pan, Y. Gao, J. Pu, G. Fu, G. Cheng and C. Guan, Adv Funct Materials, 2022, 32, 2205771.
- 3 B. Li, K. Yang, J. Ma, P. Shi, L. Chen, C. Chen, X. Hong, X. Cheng, M. Tang, Y. He and F. Kang, *Angewandte Chemie*, 2022, **134**, e202212587.
- 4 Y. Chen, Z. Deng, Y. Sun, Y. Li, H. Zhang, G. Li, H. Zeng and X. Wang, Nano-Micro Lett., 2024, 16, 96.
- 5 Z. Yang, C. Hu, Q. Zhang, T. Wu, C. Xie, H. Wang, Y. Tang, X. Ji and H. Wang, *Angew Chem Int Ed*, 2023, **62**, e202308017.
- 6 S. Li, J. Fu, G. Miao, S. Wang, W. Zhao, Z. Wu, Y. Zhang and X. Yang, Advanced Materials, 2021, 33, 2008424.
- 7 Z. Xu, S. Jin, N. Zhang, W. Deng, M. H. Seo and X. Wang, Nano Lett., 2022, 22, 1350–1357.
- 8 H. Yu, Y. Zeng, N. W. Li, D. Luan, L. Yu and X. W. (David) Lou, Sci. Adv., 2022, 8, eabm5766.
- 9 H. Liu, Z. Xu, B. Cao, Z. Xin, H. Lai, S. Gao, B. Xu, J. Yang, T. Xiao, B. Zhang and H. J. Fan, Advanced Energy Materials, 2024, 2400318.
- 10 L. Hong, X. Wu, L.-Y. Wang, M. Zhong, P. Zhang, L. Jiang, W. Huang, Y. Wang, K.-X. Wang and J.-S. Chen, ACS Nano, 2022, 16, 6906–6915.
- 11 Y. Zeng, P. X. Sun, Z. Pei, Q. Jin, X. Zhang, L. Yu and X. W. (David) Lou, Advanced Materials, 2022, 34, 2200342.
- 12 Y. Gao, Q. Cao, J. Pu, X. Zhao, G. Fu, J. Chen, Y. Wang and C. Guan, Advanced Materials, 2023, 35, 2207573.
- 13 P. X. Sun, Z. Cao, Y. X. Zeng, W. W. Xie, N. W. Li, D. Luan, S. Yang, L. Yu and X. W. (David) Lou, *Angewandte Chemie*, 2022, **134**, e202115649.
- 14 Z. Yang, F. Lai, Q. Mao, C. Liu, R. Wang, Z. Lu, T. Zhang and X. Liu, Advanced Materials, 2024, 36, 2311637.
- 15 Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang, D. Zheng, Y. Tong and X. Lu, Advanced Materials, 2019, 31, 1903675.
- 16 S. Zhou, Y. Wang, H. Lu, Y. Zhang, C. Fu, I. Usman, Z. Liu, M. Feng, G. Fang, X. Cao, S. Liang and A. Pan, Adv Funct Materials, 2021, 31, 2104361.
- 17 F. Ming, Y. Zhu, G. Huang, A.-H. Emwas, H. Liang, Y. Cui and H. N. Alshareef, J. Am. Chem. Soc., 2022, 144, 7160–7170.
- 18 J. Zheng, Z. Huang, Y. Zeng, W. Liu, B. Wei, Z. Qi, Z. Wang, C. Xia and H. Liang, Nano Lett., 2022, 22, 1017–1023.
- 19 Y. Yang, C. Liu, Z. Lv, H. Yang, Y. Zhang, M. Ye, L. Chen, J. Zhao and C. C. Li, *Advanced Materials*, 2021, 33, 2007388.
- 20 Q. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun, Y. Tang, X. Ji and H. Wang, Nat Commun, 2020, 11, 3961.
- 21 G. Zhang, X. Zhang, H. Liu, J. Li, Y. Chen and H. Duan, Advanced Energy Materials, 2021, 11, 2003927.
- 22 Z. Shen, L. Luo, C. Li, J. Pu, J. Xie, L. Wang, Z. Huai, Z. Dai, Y. Yao and G. Hong, *Advanced Energy Materials*, 2021, **11**, 2100214.