Supporting Information

A Two-in-One Probe: Imaging Lipid Droplets and Endoplasmic Reticulum in Tandem Shabnam Mansuri ${ }^{\mathrm{a}}$, Paramasivam Mahalingavelar ${ }^{\text {b }}$, Virupakshi Soppina ${ }^{\text {c* }}$ and Sriram Kanvah ${ }^{\text {a* }}$
${ }^{\text {a }}$ Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382055: Email: sriram@iitgn.ac.in
${ }^{\mathrm{b}}$ School of Chemistry and Biochemistry and School of Materials Science and Engineering Georgia Institute of Technology, Atlanta, Georgia 30332
${ }^{\text {c }}$ Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat -382055 Email: vsoppina@gmail.com

	Supplementary Information Contents
S1.	Comprehensive synthetic procedures and characterization
S2.	Photophysical properties of PFN and PFB
S3.	DLS analysis for all compounds
S4.	Computational details
S5.	Cytotoxicity assessment
S6.	Subcellular localization mapping of PFN and PFB in Live Cells
S7.	Live MCF-7 Cell Imaging with PFC
S8.	Oleic acid treatment: CLSM images and quantification plots
S9.	Photostability assessment of PFC in live cells
S10.	Characterization: NMR and HRMS Data for All Compounds
S11.	Reference

S1. Synthetic procedures and characterization

7-Diethylamino-coumarin (1a) ${ }^{1}$:

Diethyl malonate ($1.18 \mathrm{~mL}, 7.755 \mathrm{mmol}$) and 4-(diethylamino)-2-hydroxybenzaldehyde $\mathbf{1}$ ($1 \mathrm{~g}, 5.17$ mmol) were dissolved in absolute ethyl alcohol (100 mL), and then piperidine (1 mL) was added stepwise under ice bath. Under N_{2}, the reaction mixture was refluxed at $80^{\circ} \mathrm{C}$ for 12 h . After evaporating solvent in vacuum, 40 mL of concentrated $\mathrm{HCl} /$ glacial acetic acid $(1: 1, \mathrm{v} / \mathrm{v})$ was added into the reaction mixture. The reaction solution was continued to stir for 48 h at $120^{\circ} \mathrm{C}$. After cooling to room temperature, the resulting mixture was poured into 100 mL of water and neutralized with sodium hydroxide solution (40%) until the pH to 7 . The off-white precipitate was filtered and recrystallized from toluene to obtain $1.1 \mathrm{~g}(97 \%)$ of 7-diethylamino-coumarin-1a. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta\right): 7.54(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=10 \mathrm{~Hz}, \mathrm{~J}=5 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}$, $1 \mathrm{H}), 6.02(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{q}, J=5 \mathrm{~Hz}, 4 \mathrm{H}), 1.21(\mathrm{t}, J=5 \mathrm{~Hz}, 6 \mathrm{H})$. Data is consistent with that previously reported.

7-(Diethylamino)coumarin-3-carbaldehyde (1b):

Under N_{2}, freshly distilled anhydrous DMF ($5.81 \mathrm{~mL}, 75.2 \mathrm{mmol}$) was dropped into $\mathrm{POCl}_{3}(3.52 \mathrm{~mL}$, 37.6 mmol) with stirring for 6 h in an ice bath. The solution of 7-diethylamino-coumarin 1 a (815.3 mg , 3.76 mmol) in anhydrous 1,2 -dichloroethane was added to the above solution, and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 h . After completing, the mixture was poured into ice water and neutralized with NaOH solution (20\%) to pH 7 . The formed precipitate was filtered off and washed three times with water. The residue was chromatographed on silica, eluting with petroleum ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1, \mathrm{v} / \mathrm{v})$ to form orange solid $1 \mathrm{~b}(726 \mathrm{mg}, 79 \%) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 10.06(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHO}), 8.19(\mathrm{~s}$, $1 \mathrm{H}), 7.35(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, 1 \mathrm{H}), 3.41(\mathrm{q}, J=5 \mathrm{~Hz}, 4 \mathrm{H}), 1.19$ ($\mathrm{t}, J=5 \mathrm{~Hz}, 6 \mathrm{H}$). Data is consistent with that previously reported.

((E)-3-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)-2-(perfluorophenyl)acrylonitrile) (PFC):

In a round-bottom flask, $\mathbf{1 b}(50 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 2,3,4,5,6-Pentafluorobenzeneacetonitrile (63.3 mg , 0.31 mmol) were mixed in absolute ethanol. To this 0.1 mL of piperidine was added and stirred the mixture at $70^{\circ} \mathrm{C}$ for 24 h . This resulted in formation of orange coloured precipitate, which was filtered using suction pump, washed with ethanol, and dried. Yield $=79 \mathrm{mg}, 89 \%$, orange solid. ${ }^{1} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.82(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65$ $(\mathrm{dd}, J=10.0,1 \mathrm{H}), 6.48(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{q}, J=5 \mathrm{~Hz}, 4 \mathrm{H}), 1.26(\mathrm{t}, J=5 \mathrm{~Hz}, 6 \mathrm{H})) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 160.25,156.41,151.85,144.04,141.43,130.44,115.60,110.96$, 109.07, 107.35, 96.13, 91.49, 44.20, 11.46. ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -139.99 (m, 2F), -152.08 (t, 1F), -160.70 (m, 2F). HR-MS (ESI-ToF) m / z : Calculated for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 435.1126$; Found: 435.1133; error: $0.0007 \mathrm{~m} / \mathrm{z}$.

6-bromo- N, N-dimethylnaphthalen-2-amine ($2 a^{2}$)

In a pressure vessel, a suspension of 6-bromo-2-naphthol $2(4.00 \mathrm{~g}, 17.9 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(6.805 \mathrm{~g}, 35.8$ $\mathrm{mmol})$ and aqueous dimethylamine $(40 \%, 6 \mathrm{~mL}, 89.5 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ was left to stir at $145{ }^{\circ} \mathrm{C}$ for 4 days. After cooling to room temperature, the reaction mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The resulting organic layer was washed with $\mathrm{NaHCO}_{3}(5 \%, 30 \mathrm{~mL} \times 3)$, dried (Na 2 SO 4$)$, filtered and excess solvent removed. Purification by column chromatography ($98: 2$, Hexane:Ethyl Acetate) afforded the title compound $\mathbf{2 a}(4.247 \mathrm{~g}, 95 \%, \mathrm{Rf}=0.16)$ as an off-white solid. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, CDCl3): $\delta 7.75(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, \mathrm{J}=10,5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, \mathrm{J}=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 6 \mathrm{H})$. Data is consistent with that previously reported

6-(dimethylamino)-2-naphthaldehyde (2b)

A solution of 6-bromo-2-dimethylaminonaphthalene 2a ($500 \mathrm{mg}, 1.9988 \mathrm{mmol}$) in THF (anhydrous, 10 mL) was cooled to $-7{ }^{\circ} \mathrm{C}$ under nitrogen. To this was added $\mathrm{n}-\mathrm{BuLi}(2.5 \mathrm{M}$ solution in hexane, $0.960 \mathrm{~mL}, 2.4 \mathrm{mmol})$ dropwise. After stirring at $-78^{\circ} \mathrm{C}$ for 2 h , anhydrous DMF ($0.77 \mathrm{~mL}, 10.0 \mathrm{mmol}$) was slowly added. The reaction was monitored by TLC and after stirring at $0{ }^{\circ} \mathrm{C}$ for 10 hours, the reaction mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat., 20 mL). The resulting aqueous phase was then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine (20 mL), dried (Na2SO4), filtered, and the excess solvent was removed. Purification by column chromatography (70:30, Hexane:Ethyl Acetate) afforded the title compound 2b ($378.95 \mathrm{mg}, 95 \%$) as a yellow solid. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, CDCl3): $\delta 9.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{dd}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{~J}=5.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.59(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, \mathrm{J}=10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 6 \mathrm{H})$. Data is consistent with that previously reported.

(E)-3-(6-(dimethylamino)naphthalen-2-yl)-2-(perfluorophenyl)acrylonitrile (PFN)

In a round-bottom flask, $\mathbf{2 b}(100 \mathrm{mg}, 0.5 \mathrm{mmol})$ and 2,3,4,5,6-Pentafluorobenzeneacetonitrile (155.325 $\mathrm{mg}, 0.75 \mathrm{mmol}$) were mixed in absolute ethanol. To this potassium tert-butoxide $(84.165 \mathrm{mg}, 0.75$ mmol) was added and stirred the mixture at $50^{\circ} \mathrm{C}$ for 16 h . This resulted in the formation of a yellow colored precipitate, which was filtered using a suction pump, washed with ethanol, and dried. Yield = $183.63 \mathrm{mg}, 94 \%$, yellow solid. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.13(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}$, $1 \mathrm{H}), 7.75(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ $(\mathrm{d}, \mathrm{J}=5 \mathrm{~Hz}, 1 \mathrm{H}) 3.13(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 152.22,150.32,137.04,132.43$, $130.39,126.88,125.49,125.41,117.02,116.45,105.39,91.30,40.39 .{ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $140.09(\mathrm{~m}, ~ 2 \mathrm{~F}),-152.76(\mathrm{t}, 1 \mathrm{~F}),-160.89(\mathrm{~m}, ~ 2 \mathrm{~F})$. HR-MS (ESI-ToF) m / z : Calculated for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{~F}_{5} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 389.1072$; Found: 389.1077; error: $0.0005 \mathrm{~m} / \mathrm{z}$.

In a round-bottom flask, 4-(Dimethylamino)cinnamaldehyde $3(50 \mathrm{mg}, 0.3 \mathrm{mmol})$ and 2,3,4,5,6Pentafluorobenzeneacetonitrile ($93.195 \mathrm{mg}, 0.45 \mathrm{mmol}$) were mixed in 2 mL absolute ethanol. To this potassium tert-butoxide $(50.5 \mathrm{mg}, 0.45 \mathrm{mmol})$ was added and stirred the mixture at room temperature for 20 h . This resulted in formation of orange coloured precipitate, which was filtered using suction pump, washed with ethanol, and dried. Yield $=97.25 \mathrm{mg}, 93 \%$, orange solid. ${ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.46(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68$ $(\mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 151.86,150.86,145.01,130.31,128.97$, $128.87,121.85,119.73,118.05,114.96,110.88,110.80,91.30 .39 .09 .{ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 140.27 (m, 2F), -153.50 (t, 1F), -161.19 (m, 2F). HR-MS (ESI-ToF) m / z : Calculated for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~F}_{5} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 365.1072$; Found: 365.1079 ; error: $0.0007 \mathrm{~m} / \mathrm{z}$.

S2. Photophysical properties of PFN and PFB

Fig. S1: The absorption spectrum of (A) PFN and (B) PFB [10 $\mu \mathrm{M}]$ in different solvents.

Fig S2: (A) The normalized emission spectra of PFN in different solvents. (B) Emission spectra of PFN in the dioxane/water binary solvent system. [Concentration $=15 \mu \mathrm{M}$.] The probe was excited at 425 nm for fluorescence experiments.

Fig S3: (A) The normalized emission spectra of PFB in different solvents. (B) Emission spectra of PFB in the dioxane/water binary solvent system. [Concentration $=15 \mu \mathrm{M}$.] The probe was excited at 435 nm for fluorescence experiments.

Fig S4. Dynamic Light Scattering (DLS) Spectra:

Fig S4: Dynamic Light Scattering Plots PFC, PFN, and PFB depicting size of aggregates formed in water. [Concentration-5 $\mu \mathrm{M}$].

S4. Computational Details

Excited State

Fig S5. Optimized molecular geometries at the ground and excited states along with their dipole moment values and selected dihedral angles.

Fig S6. Schematic energy level diagram of the molecules investigated in this study and their isodensity surfaces corresponding to the frontier energy levels, electrostatic potential (ESP) surface plots.

\AA	PFN (GS)	PFN (ES)	PFB (GS)	PFB (ES)	PFC (GS)	PFC (ES)
$\mathrm{N}_{1}-\mathrm{C}_{2}$	1.369	1.368	1.365	1.365	1.359	1.364
$\mathrm{C}_{2}-\mathrm{C}_{3}$	1.403	1.432	1.423	1.425	1.417	1.431
$\mathrm{C}_{3}-\mathrm{C}_{4}$	1.405	1.368	1.378	1.376	1.379	1.373
$\mathrm{C}_{4}-\mathrm{C}_{5}$	1.433	1.431	1.413	1.426	1.412	1.421
$\mathrm{C}_{5}-\mathrm{C}_{6}$	1.421	1.430	1.411	1.423	1.415	1.419
$\mathrm{C}_{6}-\mathrm{C}_{7}$	1.367	1.405	1.380	1.375	1.371	1.377
$\mathrm{C}_{7}-\mathrm{C}_{2}$	1.436	1.415	1.419	1.426	1.432	1.420
$\mathrm{C}_{5}-\mathrm{C}_{8}$	1.428	1.402	-	-	1.409	1.412
$\mathrm{C}_{8}-\mathrm{C}_{9}$	1.367	1.416	-	-	1.380	1.408
$\mathrm{C}_{9}-\mathrm{Y}_{10}$	1.432	1.430	-	-	1.462	1.474
$\mathbf{Y}_{10}-\mathbf{X}_{11}$	1.396	1.371	-	-	1.394	1.391
$\mathrm{X}_{11}-\mathrm{C}_{6}$	1.405	1.426	-	-	1.365	1.368
$\mathrm{C}_{5(9)}-\mathrm{C}_{12}(14)$	1.445	1.440	1.440	1.432	1.446	1.421
$\mathrm{C}_{12}-\mathrm{C}_{13}$	-	-	1.364	1.392	-	-
$\mathrm{C}_{13}-\mathrm{C}_{14}$	-	-	1.422	1.402	-	-
$\mathrm{C}_{14}-\mathrm{C}_{15}$	1.364	1.407	1.372	1.417	1.359	1.404
$\mathrm{C}_{15}-\mathrm{C}_{16}$	1.424	1.417	1.424	1.418	1.427	1.419
$\mathrm{C}_{15}-\mathrm{C}_{17}$	1.488	1.459	1.480	1.450	1.491	1.464
$\mathrm{C}_{17}-\mathrm{C}_{18}$	1.398	1.415	1.400	1.418	1.397	1.413
$\mathrm{C}_{18}-\mathrm{C}_{19}$	1.387	1.384	1.387	1.381	1.387	1.384
$\mathrm{C}_{19}-\mathrm{C}_{20}$	1.389	1.390	1.388	1.392	1.389	1.390
$\mathrm{C}_{20}-\mathrm{C}_{21}$	1.388	1.391	1.388	1.390	1.388	1.391
$\mathrm{C}_{21}-\mathrm{C}_{22}$	1.388	1.382	1.387	1.383	1.388	1.383
$\mathrm{C}_{17}-\mathrm{C}_{22}$	1.398	1.415	1.400	1.418	1.397	1.413
$\mathrm{Y}_{10}=\mathbf{O}$	-	-	-	-	1.206	1.204

Fig S7. Geometrical coordinates of the molecules showing the bond length variation at the ground and excited states.

Fig S8. TDDFT simulated absorption spectra of the molecules obtained from the B3LYP, ω B97XD and M062X/6-311G(d, p)/C-PCM(1,4-dioxane) level of theory.

Table S1. TDDFT simulated spectral values, oscillator strength (f), and major transitions involved obtained from B3LYP/6-311G(d,p)/C-PCM(1,4-dioxane) level of theory.

B3LYP	States	$\lambda_{\text {Theory }}$ $\mathbf{(n m})$	\mathbf{f}	Major transitions involved
PFN	$\mathrm{S}_{0}-\mathrm{S}_{1}$	443.18	1.06	HOMO->LUMO (99\%)
PFB	$\mathrm{S}_{0}-\mathrm{S}_{1}$	456.73	1.52	HOMO->LUMO (100\%)
PFC	$\mathrm{S}_{0}-\mathrm{S}_{1}$	438.68	1.25	HOMO->LUMO (99\%)

Table S2. TDDFT simulated spectral values, oscillator strength (f), and major transitions involved obtained from M062X/6-311G(d,p)/C-PCM(1,4-dioxane) level of theory.

M062X	States	$\boldsymbol{\lambda}_{\text {Theory }}$ $(\mathbf{n m})$	\mathbf{f}	Major transitions involved
PFN	$\mathrm{S}_{0}-\mathrm{S}_{1}$	405.51	1.34	HOMO->LUMO (95\%)
PFB	$\mathrm{S}_{0}-\mathrm{S}_{1}$	415.25	1.66	HOMO->LUMO (96\%)
PFC	$\mathrm{S}_{0}-\mathrm{S}_{1}$	447.63	1.39	HOMO->LUMO (95\%)

Table S3. TDDFT simulated spectral values, oscillator strength (f), and major transitions involved obtained from $\omega \mathrm{B} 97 \mathrm{XD} / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p}) / \mathrm{C}-\mathrm{PCM}(1,4$-dioxane) level of theory.

$\boldsymbol{\omega B 9 7 X D}$	States	$\lambda_{\text {theory }}$ $\mathbf{(n \mathbf { n }})$	\mathbf{f}	Major transitions involved
PFN	$\mathrm{S}_{0}-\mathrm{S}_{1}$	371.72	1.35	HOMO->LUMO (89\%), H-2->LUMO (3\%)
PFB	$\mathrm{S}_{0}-\mathrm{S}_{1}$	404.61	1.70	$\mathrm{HOMO}->$ LUMO (92\%), H-1->LUMO (3\%)
PFC	$\mathrm{S}_{0}-\mathrm{S}_{1}$	389.09	1.37	HOMO->LUMO (92\%), H-1->LUMO (2\%)

S5. Cytotoxicity Assessment

Fig S9: Cell viability data for PFC, PFN and PFB at various concentrations towards COS-7 cells for 24 h .

S6. Subcellular localization mapping of PFN and PFB in Live Cells

Fig S10: Fluorescence images of (A) PFN ($3 \mu \mathrm{M}$) co-stained with (B) ER-Tracker ${ }^{\mathrm{TM}}$ Red in living COS-7 cell; Corresponding (C) Merged image, (D) Bright Field image; and (E) the intensity profile of the yellow lines drawn in both channels to describe the overlapping signal intensities. PFN: $\lambda_{\text {ex }}=488$ $\mathrm{nm}(2 \%), \lambda_{\mathrm{em}}=500-620 \mathrm{~nm} ;$ PCC $=0.82$; Scale bar $=10 \mu \mathrm{~m}$.

Fig S11: Fluorescence images of (A) PFN ($3 \mu \mathrm{M}$) co-stained with (B) Nile Red in living COS-7 cell; Corresponding (C) Merged image, (D) Bright Field image; and (E) the intensity profile of the yellow lines drawn in both channels to describe the overlapping signal intensities. PFN: $\lambda_{\text {ex }}=488 \mathrm{~nm}(0.3$ $\%), \lambda_{\mathrm{em}}=500-620 \mathrm{~nm} ;$ PCC $=0.87$; Scale bar $=10 \mu \mathrm{~m}$.

Fig S12: Fluorescence images of (A) PFB ($3 \mu \mathrm{M}$) co-stained with (B) ER-Tracker ${ }^{\text {TM }}$ Red in living COS-7 cell; Corresponding (C) Merged image, (D) Bright Field image; and (E) the intensity profile of the yellow lines drawn in both channels to describe the overlapping signal intensities. PFB: $\lambda_{\mathrm{ex}}=488$ $\mathrm{nm}(3 \%), \lambda_{\mathrm{em}}=500-620 \mathrm{~nm} ;$ PCC $=0.79$; Scale bar $=10 \mu \mathrm{~m}$.

Fig S13: Fluorescence images of (A) PFB ($3 \mu \mathrm{M}$) co-stained with (B) Nile Red in living COS-7 cell; Corresponding (C) Merged image, (D) Bright Field image; and (E) the intensity profile of the yellow lines drawn in both channels to describe the overlapping signal intensities. PFB: $\lambda_{\text {ex }}=488 \mathrm{~nm}(0.3 \%)$, $\lambda_{\text {em }}=500-620 \mathrm{~nm} ;$ PCC $=0.84 ;$ Scale bar $=10 \mu \mathrm{~m}$

S7. Live MCF-7 Cell Imaging with PFC

Fig S14: Fluorescence images of living MCF-7 cells stained with $100 \mathrm{nM} \mathrm{PFC} ; \lambda \mathrm{ex}=488 \mathrm{~nm}, \lambda \mathrm{em}=$ $550-650 \mathrm{~nm}$; Scale bar $=10 \mu \mathrm{~m}$.

S8. Oleic acid treatment: CLSM images and quantification plots

Low

Conc. of OA ($\quad \mathrm{M}$)

C Average Size

Conc. of OA (${ }^{(} \mathrm{M}$)

D Fluorescence Intensity

Fig S15: (A) CLSM images of PFC with incubation of $0 \mu \mathrm{M}, 100 \mu \mathrm{M} \& 200 \mu \mathrm{M}$ of oleic acid [scale bar: $10 \mu \mathrm{~m}$]. (0.3% Laser Power) Quantification plots for oleic acid accumulation: (B) quantification of change in number; (C) change in size (mean diameter); (D) and fluorescence intensity of lipid droplets.

S9. Photostability assessment of PFC in Live Cells

Fig S16: Fluorescent images (A) of COS-7 cells stained with PFC under continuous light irradiations and (B) the corresponding fluorescence intensity. Scale Bar $=10 \mu \mathrm{~m}$

S10. Characterization: NMR and HRMS Data for All Compounds

Fig S17: ${ }^{1} \mathrm{H}$ Spectrum of $\mathbf{1}$ a in CDCl_{3}

Fig S18: ${ }^{1}$ H Spectrum of $\mathbf{1 b}$ in CDCl_{3}

Fig S19: ${ }^{1} \mathrm{H}$ Spectrum of PFC in CDCl_{3}

Fig S20: ${ }^{13} \mathrm{C}$ Spectrum of PFC in CDCl_{3}

Fig S21: ${ }^{19}$ F Spectrum of PFC in CDCl_{3}

Fig S22: ESI mass profile of PFC

Fig S23: 1 H Spectrum of $2 a$ in CDCl_{3}

Fig S24: ${ }^{1} \mathrm{H}$ Spectrum of $\mathbf{2 b}$ in CDCl_{3}

Fig S25: ${ }^{1} \mathrm{H}$ Spectrum of PFN in CDCl_{3}

Fig S26: ${ }^{13} \mathrm{C}$ Spectrum of PFN in CDCl_{3}

Fig S27: ${ }^{19}$ F Spectrum of PFN in CDCl_{3}

Fig S28: ESI mass profile of PFN

Fig S29: ${ }^{1} \mathrm{H}$ Spectrum of PFB in CDCl_{3}

Fig S30: ${ }^{13} \mathrm{C}$ Spectrum of PFB in CDCl_{3}

Fig S31: ${ }^{19}$ F Spectrum of PFB in CDCl_{3}

Fig S32: ESI mass profile of PFB

S11. References

(1) Wang, Y.; Li, Y.; Yu, T.; Su, W.; Ma, H.; Zhao, Y.; Li, X.; Zhang, H. Functionalized coumarin derivatives containing aromatic-imidazole unit as organic luminescent materials. Dyes and Pigments 2020, 173, 107958. DOI: https://doi.org/10.1016/j.dyepig.2019.107958.
(2) Rao, A. S.; Kim, D.; Wang, T.; Kim, K. H.; Hwang, S.; Ahn, K. H. Reaction-Based Two-Photon Probes for Mercury Ions: Fluorescence Imaging with Dual Optical Windows. Org. Lett. 2012, 14 (10), 25982601. DOI: 10.1021/ol3009057.

