Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2024

Supplementary file

Preparation and assessment of agar/TEMPO-oxidized bacterial cellulose cryogels for hemostatic applications

Kaushal R Shakya¹, Kuldeep Nigam¹, Arpit Sharma², Kousar Jahan³, Amit Kumar Tyagi², Vivek Verma^{1,4,5,6}

¹Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur – 208016,

India

²Department of Chemical, Biological, Radiological and Nuclear disasters, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Timarpur, New Delhi – 110054

³Department of Chemistry, Delaware State University, Dover, Delaware – 19901, USA

⁴Centre of Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur – 208016,

India

⁵Samtel Centre for Display Technologies, Indian Institute of Technology Kanpur, Kanpur – 208016, India
⁶National Centre for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur – 208016, India
corresponding author: <u>vverma@iitk.ac.in</u>

Figure S1: (A) XPS survey spectra of BC and OBC (B) Conductometric titration curve of BC sample titrated against NaOH (0.01 M).

(A)	(B)

Figure S2: SEM images of commercial hemostats and oxidized bacterial cellulose (A) Axiostat hemostat (B) Surgispon hemostat. (C, D) OBC at higher magnification (5000×).

Cryogels	DI	Agar		OBC	
	(mL)	Wt. %	Amount (mg)	% (w/w)	Amount (mg)
1% Agar	20	1	200	-	-
1%A_20%OBC	20	1	200	20	40
1%A_30%OBC	20	1	200	30	60
1%A_40%OBC	20	1	200	40	80

Table 1: Composition of agar/OBC cryogels

Table 2: Band areas of C(1s) peaks for the BC and OBC sample.

	BC		OBC	
Bonds	Peak position	Area	Peak position	Area
С-ОН	286.52	2069.11	286.52	1816.94
С-С/С-Н	284.82	974.36	284.83	916.71
0-C-0	288.15	751.76	287.90	766.26
C=0/0-C=0	-	-	289.26	117.53

(A)	(B)

cryogels when dipped in water for 60 min.(D) Degradability of test cryogels in PBS and lysozyme solution. (E) The stability of the cryogels in blood was assessed by compressing the cryogel and observing its recovery upon the addition of blood.

(A)	(B)

Material	<i>In vitro</i> hemostatic study	In vivo hemostatic study	Ref.
Agar/oxidized bacterial cellulose cryogels	Complete clotting in 120 s	In rat liver injury model, shortest hemostatic time was 35 s. In rat tail amputation model, shortest time was	work
Alginate/ oxidized cellulose nanocrystal sponges	Not performed	In rabbit liver injury model, shortest hemostatic time was ~76 s. In ear artery injury, the time was ~70 s.	1
Quaternized chitosan/carbon nanotube (CNT) cryogels	Lowest BCI of 10% in 150 s.	In mouse liver injury model, lowest hemostasis time was ~80 s. In tail amputation model, hemostatic time varies from 117 to 60 s.	2

Quaternized chitosan/mesoporous bioactive glass (MBG) cryogels	Lowest BCI of ~10% in 5 min.	For rat liver prick injury model, shortest hemostasis time of ~71 s. In penetrating liver defect model, hemostasis time was ~46 s.	3
Gelatin/ polydopamine cryogels	Best sample with15% BCI in 150 s.	In mouse-tail amputation model, shortest hemostatic time of 37s. For mouse liver trauma model, shortest hemostatic time of 62 s. For the rat liver incision model, shortest hemostatic time of 73 s. The rabbit liver cross incision model, shortest hemostatic time of 82 s.	4
Poly (vinyl alcohol) (PVA), Carboxymethyl chitosan (CMCS) and Dopamine (DA) cryogels	Best sample with 20% BCI in 120 s.	For mouse liver trauma model, the shortest hemostatic time of 2.2 min and blood loss of 128 mg. In rat liver incision model, hemostatic time of 1.7 min and blood loss of 194 mg.	5
Polyurethane/hyaluronic acid cryogels	Blood clotting time of 2 ± 2 min.	In rat liver hemorrhage model, hemostasis time of 72 ± 15 s and blood loss of 80 ± 23 mg.	6
Carboxymethyl chitosan/ <u>poly(</u> N- isopropylacrylamide) (CMCS/PNIPAM)	BCI 20-25% for clotting time of 30 seconds. Samples are tested with 50 μL.	In mouse liver trauma model, the amount of blood loss in C/N/MPA10 group was 52.6 mg and shortest hemostasis time of ≈198 s.	7

References

- 1 F. Cheng, C. Liu, X. Wei, T. Yan, H. Li, J. He and Y. Huang, *ACS Sustain Chem Eng*, 2017, **5**, 3819–3828.
- 2 X. Zhao, B. Guo, H. Wu, Y. Liang and P. X. Ma, *Nature Communications 2018 9:1*, 2018, **9**, 1– 17.
- 3 L. Yao, H. Gao, Z. Lin, Q. Dai, S. Zhu, S. Li, C. Liu, Q. Feng, Q. Li, G. Wang, X. Chen and X. Cao, *Chemical Engineering Journal*, 2022, **428**, 131005.
- 4 Y. Huang, X. Zhao, Z. Zhang, Y. Liang, Z. Yin, B. Chen, L. Bai, Y. Han and B. Guo, *Chemistry of Materials*, 2020, **32**, 6595–6610.

- 5 Y. Huang, X. Zhao, C. Wang, J. Chen, Y. Liang, Z. Li, Y. Han and B. Guo, *Chemical Engineering Journal*, 2022, **427**, 131977.
- 6 M. Wang, J. Hu, Y. Ou, X. He, Y. Wang, C. Zou, Y. Jiang, F. Luo, D. Lu, Z. Li, J. Li and H. Tan, ACS Appl Mater Interfaces, 2022, **14**, 17093–17108.
- 7 Y. Yang, M. Li, G. Pan, J. Chen, B. Guo, Y. Yang, G. Pan, J. Chen, B. Guo and M. Li, *Adv Funct Mater*, 2023, **33**, 2214089.