Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Star-PCL Shape Memory Polymer (SMP) Scaffolds with Tunable Transition Temperatures for Enhanced Utility

Courteney T. Roberts,^a Sarah K. Beck,^a C. Mabel Prejean,^a Lance M. Graul,^a Duncan J. Maitland,^a and Melissa A. Grunlan^{a,b,c*}

^aDepartment of Biomedical Engineering, ^bDepartment of Materials Science and Engineering, ^cDepartment of Chemistry, Texas A&M University, College Station, Texas 77843, United States.

* mgrunlan@tamu.edu (corresponding author)

14 Pages

9 Figures

9 Tables

3 videos

Figure S1. (a) Synthetic scheme for the acrylation of *linear*-PCL-diol to produce *linear*-PCL-DA. (b) ¹H NMR spectra for *linear*-PCL-diols and *linear*-PCL-DAs of different M_n s. (c) Summary of *linear*-PCL-diols' thermal properties (from DSC), and M_n (from ¹H NMR). (d) Summary of the *linear*-PCL-DA macromers' thermal properties (from DSC), and % acrylation (from ¹H NMR).

Figure S2. (a) Synthetic scheme for the acrylation of *star*-PCL-tetrol to produce *star*-PCL-TA. **(b)** ¹H NMR spectra for *star*-PCL-tetrols and *star*-PCL-TAs of different M_n s. **(c)** Summary of *star*-PCL-tetrols' thermal properties (from DSC), and M_n (from ¹H NMR). **(d)** Summary of *star*-PCL-TA macromers' thermal properties (from DSC) and % acrylation (from ¹H NMR).

Figure S3. Crosslink density assessed via swelling tests of solid film discs. (a) For each macromer, image of resulting dry (left) and solvent-swollen (right) specimens. (b) Corresponding % diameter difference between a dry and solvent-swollen discs of a given composition. "Black *" p < 0.05 *linear*- versus *star*- films of same M_n . "Blue *" p < 0.05 versus 10kt. "Pink *" p < 0.05 versus 10kt.

	Diameter Difference (%)
10k l	125.9 ± 2.34
10k ★	87.8 ± 4.39
7.5k l	113.1 ± 4.83
7.5k ★	78.9 ± 8.12
5k l	108.4 ± 6.89
5k ★	73.8 ± 3.92

Table S1. Crosslink density assessed via swelling tests of solid film discs.

Figure S4. Reduced viscosity (η_{red}) of acrylated macromer solutions of varying M_n s: (a) 10 kg mol⁻¹, (b) 7.5 kg mol⁻¹, and (c) 5 kg mol⁻¹.

	Reduced Viscosity (mL/g) at Concentration			
	0.075 g/mL	0.150 g/mL	0.225 g/mL	0.300 g/mL
10k l	36.6 ± 0.71	60.9 ± 1.49	105.1 ± 2.84	129.9 ± 2.81
10k ★	19.7 ± 0.72	25.2 ± 0.37	54.1 ± 13.93	60.7 ± 1.48
7.5k l	17.9 ± 0.19	25.9 ± 2.37	53.2 ± 15.57	85.5 ± 1.88
7.5k ★	15.2 ± 0.42	24.31 ± 0.55	27.6 ± 1.32	$43.4\pm\!\!1.22$
5k l	13.6 ± 0.48	20.3 ± 0.31	30.4 ± 4.30	34.2 ± 0.70
5k ★	11.5 ± 0.08	19.5 ± 0.41	26.2 ± 0.21	35.3 ± 1.08

 $\label{eq:table S2.} \mbox{Reduced viscosity} \ (\eta_{red}) \ of \ acrylated \ macromer \ solutions \ of \ varying \ M_n s \ at \ designated \ concentrations.$

Figure S5. Dye-containing macromer solution diffusion through a salt mold. Accompanied videos provided.

Figure S6. Sol content (%) of scaffolds.

	Sol Content (%)
10k ℓ	2.6 ± 1.80
10k ★	2.9 ± 1.35
7.5k l	1.8 ± 0.25
7.5k ★	2.9 ± 0.76
5k l	5.0 ± 1.39
5k ★	1.8 ± 0.72

Table S3. Sol content (%) of scaffolds.

Figure S7. (a) SEM images of the scaffold cross-sections. (b) Scaffold pore diameters. (c) % Porosity of scaffolds. "Black *" p < 0.05 comparing *linear*- and *star*- scaffolds of same M_n . "Blue *" p < 0.05 versus 10kt. "Pink *" p < 0.05 versus 10kt.

Figure S8. Scaffold pore interconnectivity.

	Pore Size (µm)	Porosity (%)	Pore Interconnectivity (%)
10k l	209.1 ± 42.00	67.6 ± 4.93	45.4 ± 6.40
10k ★	197.2 ± 35.21	68.6 ± 2.43	51.7 ± 6.85
7.5k ℓ	188.4 ± 44.89	63.9 ± 1.53	48.1 ± 5.36
7.5k ★	185.4 ± 36.03	76.6 ± 2.67	56.7 ± 5.69
5k l	189.2 ± 30.60	65.7 ± 2.58	48.1 ± 5.84
5k ★	176.2 ± 38.20	74.7 ± 2.43	56.0 ± 6.98

Table S4. Scaffold pore size, % porosity, and % pore interconnectivity.

	T _{m,onset} (°C)	<i>T_m</i> ,(°C) ["midpoint"]	Crystallinity (%)
10k l	51.3 ± 0.13	56.7 ± 0.11	46.5 ± 1.09
10k ★	39.6 ± 2.25	46.2 ± 1.53	26.7 ± 2.07
7.5k l	48.6 ± 1.15	52.2 ± 0.93	37.1 ± 0.35
7.5k ★	34.3 ± 4.04	40.4 ± 2.12	22.4 ± 5.55
5k l	45.9 ± 0.27	51.4 ± 0.11	35.3 ± 1.23
5k ★	17.8 ± 0.52	29.1 ± 0.42	18.7 ± 0.30

Table S5. $T_{\rm m}$ and % crystallinity of scaffolds.

Table S6. Scaffold shape fixity (R_f) and shape recovery (R_r) for cycle 1 and cycle 2.

	Rf cycle 1 (%)	R _{r cycle 1} (%)	$R_{f \text{ cycle } 2}(\%)$	R _{r cycle 2} (%)
10k l	99.3 ± 7.77	108.6 ± 6.28	103.5 ± 3.62	97.0 ± 1.90
10k ★	103.6 ± 3.43	103.5 ± 3.79	101.5 ± 4.75	96.4 ± 1.02
7.5k ℓ	104.0 ± 4.17	100.8 ± 0.70	102.3 ± 2.62	101.3 ± 3.46
7.5k ★	98.3 ± 3.46	97.3 ± 3.27	102.7 ± 5.52	101.8 ± 5.05
5k l	97.6 ± 1.72	99.9 ± 0.58	95.3 ± 3.12	99.7 ± 1.64
5k ★	107.3 ± 4.02	98.8 ± 2.46	108.5 ± 3.43	99.9 ± 2.09

	Radial Pressure (kPa)
10k l	107 ± 32
10k ★	273 ± 56
7.5k ℓ	122 ± 58
7.5k ★	156 ± 85
5k l	77 ± 21
5k ★	165 ± 61

Table S7. Radial pressure exerted by scaffold at its T_m .

Table S8. Scaffold mass loss (%) during accelerated degradation study (0.1 M NaOH, 37 °C).

	Composition					
Time (day)	10k l	10k★	7.5kℓ	7.5k★	5kl	5k★
1	2.4 ± 3.24	0.5 ± 1.01	3.1 ± 3.16	12.0 ± 2.12	1.9 ± 0.80	0.3 ± 1.11
2	2.5 ± 1.52	$\textbf{4.0} \pm 1.79$	1.1 ± 0.97	9.2 ± 6.06	2.6 ± 2.10	10.9 ± 10.90
3	0.9 ± 1.25	3.4 ± 2.25	3.3 ± 0.99	7.8 ± 1.90	3.7 ± 2.24	25.3 ± 7.93
4	1.7 ± 1.19	5.4 ± 2.46	4.8 ± 1.63	14.0 ± 4.50	9.2 ± 6.39	36.8 ± 8.89
5	$\textbf{4.4} \pm \textbf{1.34}$	6.6 ± 1.47	7.1 ± 1.57	33.5 ± 8.87	1.0 ± 2.03	57.0 ± 34.29
6	5.7 ± 0.99	11.3 ± 2.99	9.7 ± 4.67	45.3 ± 17.79	7.7 ± 2.60	$\textbf{84.6} \pm \textbf{18.98}$
7	5.8 ± 2.88	16.6 ± 6.08	16.3 ± 2.34	50.5 ± 14.71	9.2 ± 2.29	$\textbf{97.9} \pm 1.91$
8	$\textbf{27.8} \pm \textbf{11.99}$	16.9 ± 5.65	17.0 ± 2.49	65.8 ± 31.67	9.7 ± 1.52	98.6 ± 1.73
9	$\textbf{35.8} \pm 10.22$	29.8 ± 6.56	22.6 ± 7.04	96.7 ± 5.77	17.2 ± 13.30	100.0 ± 0.00
10	58.2 ± 28.05	35.2 ± 12.84	42.9 ± 10.20	97.6 ± 2.68	$\textbf{27.0} \pm \textbf{18.06}$	100.0 ± 0.00
12	72.3 ± 11.29	69.1 ± 15.52	81.3 ± 32.40	100.0 ± 0.00	13.6 ± 5.26	100.0 ± 0.00
15	81.2 ± 22.58	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	58.7 ± 5.83	100.0 ± 0.00

Figure S9. SEM images of initial scaffolds and scaffolds after 7 days in 0.1M NaOH (37 °C).

	Compressive Modulus (MPa)	Compressive Strength (MPa)	Compressive Toughness (MJ m ⁻³)
10k l	7.10 ± 2.20	32.73 ± 1.93	5.24 ± 0.68
10k ★	2.02 ± 0.68	10.55 ± 3.57	1.84 ± 0.46
7.5k ℓ	5.54 ± 1.96	31.97 ± 4.56	4.35 ± 0.98
7.5k ★	1.30 ± 0.65	7.30 ± 4.04	1.23 ± 0.62
5k l	4.65 ± 1.62	27.74 ± 11.23	4.29 ± 1.16
5k ★	0.69 ± 0.18	5.37 ± 2.52	0.86 ± 0.32

 Table S9. Scaffold compressive mechanical properties.