Development of Novel Iron (III) Crosslinked Bioinks Comprising Carboxymethyl Cellulose, Xanthan Gum, and Hyaluronic Acid for Soft Tissue Engineering Applications

Hien-Phuong Le a, Kamrul Hassan a, Mahnaz Ramezanpour b,c, Jonathan A. Campbell d, Tran Thanh Tung a, Sarah Vreugde b,c, Dusan Losic a,*

a School of Chemical Engineering, The University of Adelaide, South Australia, 5005, Australia

b Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, 5011, Australia

c Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, 5005, Australia

d Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5041, Australia

* Corresponding author: Professor Dusan Losic

E-mail address: dusan.losic@adelaide.edu.au
S1. Rheological measurements

Figure S1. Determination of linear viscoelastic region of CMC/XG/HA bioink using oscillatory strain sweep over the range of 0.01% - 1000% strain.

S2. Quantifications of cell numbers from Live/Dead images

Figure S2. Cell proliferation shown as cell numbers counted from Live/Dead images of HaCaT (a) and HFF (B) at different days. The quantitative data was represented as mean ± SD (n=3). One-way ANOVA with Holm-Sidak post hoc test, * p < 0.05 and ** p < 0.01 compared to bulk hydrogels at day 1. There was an increasing trend in the numbers of HaCaT in both bulk hydrogels and bioprinted constructs from day 1 to day 7, but the differences were not significant. For HFF, significant cell proliferation from day 1 to day 3 was observed in bulk hydrogels, but the difference between 3 and 7 d was not significant.