The P(NIPAM-co-DABP-co-AAc) as a dual stimuli-responsive hydrogel: Temperature and pH-responsive materials for potential drug delivery applications

Purushottam Suryavanshi¹, Shriram Mahajan², Sanjay K Banerjee², Kapileswar Seth^{3*}, and Subham Banerjee^{1*}

¹Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari 781101, Assam, India.

²Department of Biotechnology, NIPER-Guwahati, Changsari 781101, Assam, India.

³Department of Medicinal Chemistry, NIPER-Guwahati, Changsari 781101, Assam, India.

*E-mail: kapileswar@niperguwahati.in; subham@niperguwahati.in

ORCID ID: 0000-0002-8505-5806 (PS); 0000-0002-3322-820X (SM); 0000-0002-0044-0984 (SKB); 0000-0002-2877-1590 (KS); 0000-0002-2984-1159 (SB)

General Consideration

The ¹H and ¹³C spectra were recorded on Bruker AVANCE NEO NMR SPECT.400 NanoBay system in CDCl₃ as a residual undeuterated solvent (CDCl₃: 7.26/77.0 ppm) for DABP, CD₃OD for PNIPAM-co-DABP (CD₃OD: 3.35-4.78 ppm), and DMSO for P(NIPAM-co-DABP-co-AAc) (CD₃SOCD₃: 2.49 ppm) using Me₄Si as an internal standard. Chemical shifts (δ) are given in ppm, and J values are given in Hz. The FT-IR spectra were recorded on neat (Solids) samples using Alpha 2, Bruker spectrometer. The mass spectra were recorded using LC/MS-MS (Agilent Technologies, USA). Column purification and Thin Layer Chromatography (TLC) were performed on silica gel (CDH silica gel 60-120 mesh, F254, Merck[®] silica gel respectively). Evaporation of all solvents was performed at reduced pressure, using IKA rotary evaporator. All the chemicals were purchased from Sigma Aldrich, Merck[®], and TCI chemicals and used as received. Scanning electron microscopy (SEM) was utilized to observe the morphological changes of the hydrogel, which was used for the *in vitro* release studies. The hydrogel samples which were utilized for the 5-FU release in pH 1.2 and 6.8 at 37 C were lyophilized to maintain the morphological behavior before the SEM analysis. After the lyophilization, the samples were mounted on carbon tape and sputtered with gold using Quorum sputter (Q 150R S plus, Quorum, UK). The SEM

micrograph images were acquired using electron microscopy (Carl Zeiss/Gemini SEM 360) at the required magnification and voltage.

Typical synthetic scheme for triblock copolymer P(NIPAM-co-DABP-co-AAc)

A) Step-wise approach

Step 1: Typical synthetic scheme for 2,4'-diacryloyloxy benzophenone (DABP)

HC

DCE, 20 mol% Pyridine 60 °C

0

2,4'-Dihydroxybenzophenone Acrylic anhydride

(1)

(2)

2,4'- diacryloyloxy benzophenone

(3)

Scanned NMR, Mass, and FT-IR spectra

Supplementary Figure S1: H¹ NMR of 2,4'-diacryloyloxy benzophenone

Supplementary Figure S2: C13 NMR of 2,4'-diacryloyloxy benzophenone

Supplementary Figure S3: Scanned FT-IR spectrum of 2,4'-diacryloyloxy benzophenone

Supplementary Figure S4: Scanned mass spectrum 2,4'-diacryloyloxy benzophenone

Supplementary Figure S5: Blank mass spectrum

Step 2: Typical synthetic scheme for P(NIPAM-co-DABP)

1.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 -0.2 fl (ppm)

Supplementary Figure S6: Expanded H¹ NMR of P(NIPAM-co-DABP)

Supplementary Figure S7: Scanned FT-IR spectrum of P(NIPAM-co-DABP)

Step 3: Typical synthetic scheme for P(NIPAM-co-DABP-co-AAc)

Supplementary Figure S8: Expanded H¹ NMR of P(NIPAM-co-DABP-co-AAc)

B) One-pot multicomponent synthesis of P(NIPAM-co-DABP-co-AAc)

+

2,4'- diacryloyloxy benzophenone
(3)

N-isopropylacrylamide

(4)

Acrylic acid (6)

(7)

Supplementary Figure S9: Expanded H¹ NMR of P(NIPAM-co-DABP-co-AAc)

The detailed strategy to confirm regio-selective copolymerization of the PNIPAM to the para-acryloyl unit of DABP is given in supplementary information.

To confirm the regio-selective copolymerization of the PNIPAM to the para-acryloyl unit of DABP, we synthesized 4-acroryloxybenzophenone using the procedure reported in our previous published work ¹. In 4-acroryloxybenzophenone, the acryloyl protons are present at the para position, and we confirmed the same by taking the ¹H NMR spectra of 4-acroryloxybenzophenone (As shown in **Supplementary Figure S10**).

Supplementary Figure S10: ¹H NMR of 4-acroryloxybenzophenone

In ¹H NMR spectra of 4-acroryloxybenzophenone, we got the para proton shift in the range of 5.98-6.60 ppm. In detail, 1H NMR (400 MHz, Chloroform-d) δ 7.88 – 7.66 (m, 4H), 7.59 – 7.46 (m, 1H), 7.46 – 7.35 (m, 2H), 7.26 – 7.13 (m, 2H), 6.58 (dd, J = 17.3, 1.2 Hz, 1H), 6.27 (dd, J = 17.3, 10.4 Hz, 1H), 5.99 (dd, J = 10.4, 1.2 Hz, 1H). In the next step, we analyzed the ¹H NMR spectra of DABP and compared them with the ¹H NMR of 4-acroryloxybenzophenone. From the ¹H NMR spectra of DABP (**Supplementary Figure S1**), we confirmed the presence of para and ortho proton and matched with the para shift of 4-

acroryloxybenzophenone. As shown in **Supplementary Figure S1**, the para-proton shifts were observed in the range of 6.0-6.58 ppm, slightly shifted as compared to the 4-acroryloxybenzophenone, and the ortho-proton shift was observed in the range of 5.8-6.25 ppm. Finally, the P(NIPAM-co-DABP) ¹H NMR spectra were recorded and compared with the ¹H NMR spectra of 4-acroryloxybenzophenone and DABP and analyzed the regio-selective copolymerization of the PNIPAM to the para-acryloyl unit of DABP. As shown in **Supplementary Figure S6**, indicating the absence of NMR signals in the region of 6.0-6.58 ppm, which was assigned as a para proton shift. On the other hand, the shift for the ortho protons is visible in the range of 5.60-6.20 ppm, which is aligned with the ortho proton shift in DABP, confirming the copolymerization of PNIPAM at the para position of the acryloyl unit of DABP.

Reference:

1) P. Suryavanshi, S. Kawre, M. Maniruzzaman, K. Seth and S. Banerjee, *Chemical Papers*, 2023, 1-10.

Supplementary Figures

Supplementary Figure S11: First derivative TGA graph of (A) AAc, (B) NIPAM, (C) DABP, and (D) P(NIPAM-co-DABP-co-AAc).

Supplementary Figure S12: Full recorded MALDI-ToF spectrum of P(NIPAM-co-DABPco-AAc)

Supplementary Figure S13: P(NIPAM-co-DABP-co-AAc) hydrogel diameter as a function of temperature at indicated pH values.

Supplementary Figure S14: pH-responsive FT-IR (a) and UV-visible spectroscopy (b).

Supplementary Figure S15: Biochemical parameters of all experimental rats at indicated days (ns = nonsignificant)

Supplementary Figure S16: SEM images of hydrogel samples which were used for the 5-FU release in (a) pH 1.2 solution and (b) pH 6.8 solution

Supplementary Tables

Table 1: General and body weight observations of all experimental rats as a preliminary evaluation for any sign of toxicity of P(NIPAM-co-DABP-co-AAc)

Parameters to be observed	Control Group (n = 3) Mean±SD	Test Group (n = 3) Mean±SD	
Body weight (gm) Before treatment 04 hr Day 01 Day 07 Day 14	$187.5{\pm}12.21$ $185.0{\pm}14.95$ $189.83{\pm}14.74$ $191.33{\pm}15.30$ $191.83{\pm}14.21$	173.5 ± 3.39 170.0 ± 2.75 179.33 ± 6.59 180.33 ± 5.75 189.33 ± 8.47	
General Appearance (Dehydration, diarrhea, Body temperature, Alopecia, Lacrimation, Eye opacity, etc.) Before treatment 04 hr Day 01	Normal	Normal	

Day 07 Day 14		
Mortality	No	No

Hematological parameters	Control Group (n = 3) Mean±SD				Test Group (n = 3) Mean±SD			
	Before dosing	01 Day	07 Day	14 Day	Before dosing	01 Day	07 Day	14 Day
WBC (10 ³ /µL)	15.86±5.24	13.26±3.01	12.26±3.58	12.06±2.31	13.66±3.36	10.1±1.64	10.21±2.55	11.23±2.93
RBC $(10^3/\mu L)$	8.63±0.49	8.78±0.23	8.11±0.33	8.81±4.87	9.77±0.96	6.08±0.56	8.37±2.06	10.36±1.82
HGB (g/dL)	15.83±1.80	13.98±1.20	14.83±1.50	18.33±7.49	17.96±2.02	11.28±0.77	16.05±4.18	16.89±1.38
HCT (%)	44.06±4.75	47.56±3.27	46.56±4.81	51.13±27.28	50.73±5.37	32.5±2.49	50.3±11.75	51.24±8.78
MCV (fL)	50.93±2.60	54.55±4.61	57.26±3.61	58.3±3.02	51.9±1.32	53.46±1.39	55.21±1.63	58.93±2.13
MCH (pg)	18.3±1.03	17.85±1.32	18.26±1.12	22.43±4.60	18.36±0.50	18.56±0.60	19.11±0.44	21.55±2.37
MCHC (g/dL)	35.93±1.07	31.54±0.06	31.86±0.05	38.43±7.40	35.36±0.25	34.70±0.37	32.76±0.77	36.51±3.19
PLT (10 ³ /μL)	680.0±95.68	754.66±60.30	798.66±52.30	815.12±56.21	717.66±74.31	848.8±76.21	859.21±68.21	865±58.12
RDWCV (%)	13.33±0.92	14.3±0.84	14.6±0.87	14.7±0.84	12.76±0.73	13.08±0.51	13.54±0.72	13.65±0.54
RDWSD (fL)	27.13±2.00	29.3±3.87	33.5±3.91	35.6±4.21	26.5±2.21	28.0±1.64	30.23±1.96	29.54±1.65
PCT (%)	0.38±0.06	0.49±0.05	0.53±0.06	0.49±0.06	0.39±0.03	0.41±0.16	0.45±0.13	0.51±0.07
MPV (fL)	5.7±0.26	5.98±0.40	6.16±0.35	6.12±0.32	5.53±0.15	5.54±0.27	6.11±0.17	5.95±0.40
PDW (%)	15.86±0.20	14.98±0.45	15.63±0.55	18.2±0.17	15.7±0.40	14.98±0.33	15.02±0.49	16.12±0.35

Table 2: Total haematological parameters of SD rats before and after oral administration of synthesized P(NIPAM-co-DABP-co-AAc)