Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Multipurpose Mitochondrial NIR Probe for Imaging Ferroptosis and Mitophagy

Deeksha Rajput^a, Nachiket Pradhan^a, Shabnam Mansuri^a, Virupakshi Soppina^{c*} and Sriram Kanvah^{a*}

^aDepartment of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382355

^bDepartment of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355

sriram@iitgn.ac.in

Contents						
S1.	Table S1: List of a few previously reported probes for similar function					
S2.	Absorption and emission spectra					
S3.	Lifetime data: Figure S2 and Table S2					
S4.	Viscosity sensing in solution					
S5.	Influence of added analytes on the fluorescence properties of PP and NP					
S6.	Live cell imaging					
S7.	Cytotoxicity assay					
S8.	Live Cell Imaging with probe NP with Nystatin treatment					
S9.	Live Cell Imaging with probe NP during Ferroptosis					
S10	Synthetic scheme and synthetic procedures					
S11	Characterization data					
S12	Spectral copies					

Previously reported mitochondrial probes for ferroptosis/mitophagy:

Probe	Emission Maxima	MMP Independent	Ferroptosis/ Mitophagy	Viscosity Sensing (Solution/Endogenous in cells)	Ref.
1.	668	Yes	No/Yes	Yes/Yes	1
2.	675	Yes	Yes/No	Yes/Yes	2
3.	670	No	No/Yes	Yes/Yes	3
4.	704	No	Yes/No	Yes/Yes	4
5.	795	No	Yes/No	Yes/Yes	5
6.	602	No	Yes/No	Yes/Yes	6
7.	553	No	Yes/No	No/No	7
8.	700	Yes	Yes/Yes	Yes/Yes	This Work

Table S1: Details of Previously reported probes

Figure S1: Molecular structures of previously reported probes which detect ferroptosis/mitophagy process but none utilizing this architecture are known.

S2: Absorption and emission spectra:

Figure S2: A) Absorption and B) Emission spectra of PP in all solvents. Concentration: 10µM.

S3: Lifetime decay

Figure S3: A) & B) Lifetime decay for NP & PP in different solvents.

NP											
Components	τ_1 (ns)	A1	$\tau_2(ns)$	A2	Average Lifetime (τ) (ns)	χ^2					
Dioxane	0.09	47.4%	0.30	52.5%	0.15	1.03					
CH ₃ CN	0.10	100%	-	-	0.10	0.96					
DMSO	0.26	100%	-	-	0.26	1.18					
Water	0.07	68.0%	0.41	31.9%	0.07	1.04					
РР											
Components	$\tau_1(ns)$	A1	$\tau_2(ns)$	A2	Average Lifetime (τ) (ns)	χ^2					
Dioxane	0.07	63.75%	0.25	36.25%	0.10	1.32					
CH ₃ CN	0.03	100%	-	-	0.03	1.22					
DMSO	0.11	100%	-	-	0.11	1.01					
Water	0.03	100%	-	-	0.03	1.16					

Table S2: Lifetime decay for the compounds in different solvents.

*Most of the decays are very fast and overlap with the instrument response function (IRF). The FWHM of IRF is 70 ps, and the resolution of the experiment is 13 ps. For such data, it is difficult to resolve with our current instrument setup.

S4: Viscosity sensing in solution:

Figure S4: Emission spectra of A) PP in different viscous medium; B) Viscosity vs Log I with linear relationship for PP (Inset – Colour of the fluorophore in 0% glycerol and 100 % glycerol)

S5: Ion selectivity of the probe:

Figure S5: Fluorescence response of A) NP and B) PP to different competitive analytes (A–K: F^- , Cl⁻, Br⁻, Γ^- , NO₂⁻, NO₃⁻, S²⁻, CH₃COO⁻, Ca²⁺, Mg²⁺, Fe³⁺. Concentration of probes and analytes: 10 μ M.

S6: Live Cell imaging:

Figure S6: Colocalization of PP in COS-7 cells. CLSM image of A) PP, B) MitoView 405, C) Merged image, D) Bright field image and E) Intensity profile.

S7: Cytotoxicity assay:

Figure S7: Cytotoxicity assay for PP & NP

S8: Live Cell Imaging with probe NP with Nystatin treatment:

Figure S8: CLSM Images of NP with before (first column) and after Nystatin treatment (second column). (Images with multiple cells)

S9: Live Cell Imaging with probe NP during Ferroptosis:

Figure S9: CLSM Images of NP with no treatment (first column), erastin treatment (second column), erastin + ferrostatin-1 treatment (third column), and ferrostatin-1 treatment (fourth column) after 0 min (first row) and 30 min (second row) incubation with NP. (Images with multiple cells)

S10: Synthetic procedures:

General procedures:

Styrene 3 (Heck Coupling):

In a sealed reactor, 1 molar equivalent of N, N-dimethylamino bromonaphthalene derivative 2 was dissolved in dry DMF, followed by the addition of 3 molar equivalents of triethylamine, a pinch of tris (o-tolyl) phosphine ligand and $Pd(OAc)_2$. The contents were stirred for 10 min at room temperature. After the addition of 3 molar equivalents of vinyl pyridine, the reaction was tightly sealed and allowed to heat at 100° C. After completion of the reaction, as monitored by TLC, the reaction mixture is triturated with n-pentane and filtered off to get yellowish orange coloured powder. (64% yield)

General procedure for N-Alkylation: The styryl pyridyl derivatives (**3** or **5**) were dissolved in dry acetonitrile and allowed to stir at room temperature for 15 mins, followed by the addition of 0.51 molar equivalents of 1,12-dibromo dodecane. The reaction mixture was refluxed for 24

h. The solvent was evaporated using a rotatory evaporator and the obtained precipitate was washed with diethyl ether and pentane and filtered to get pure dark red colored solid powder. (80% yield for PP and 70% yield for NP)

S11: Characterization data:

PP: 1,1'-dodecane-1,12-diyl)bis(4-((E)-4-(dimethylamino)styryl)pyridin-1-ium bromide

¹H NMR (500 MHz, *DMSO-d6*) δ 8.79 (d, J = 6.7 Hz, 4H), 8.08 (d, J = 6.7 Hz, 4H), 7.94 (d, J = 16.0 Hz, 2H), 7.60 (d, J = 8.8 Hz, 4H), 7.19 (d, J = 16.1 Hz, 2H), 6.79 (d, J = 8.9 Hz, 4H), 4.41 (t, J = 7.2 Hz, 4H), 3.03 (s, 12H), 1.87 (m, 4H), 1.25 (d, J = 17.4 Hz, 16H). ¹³C NMR (126 MHz, DMSO) δ 153.12, 151.31, 142.87, 141.57, 129.58, 121.86, 121.77, 116.49, 111.34, 58.49, 39.51, 39.42, 39.34, 39.25, 39.17, 39.08, 39.01, 38.91, 38.75, 38.58, 38.41, 29.86, 28.27, 28.21, 27.81, 24.84. HRMS: Observed Mass: 308.2207; Calculated Mass: 308.2247

NP: 1,1'-dodecane-1,12-diyl) bis(4-((E)-2-(6-(dimethylamino) naphthalen-2-yl) vinyl) pyridin-1-ium bromide

¹H NMR (500 MHz, *DMSO-d6*) δ 8.91 (d, *J* = 6.7 Hz, 4H), 8.21 (d, *J* = 6.8 Hz, 4H), 8.13 (d, *J* = 16.2 Hz, 2H), 8.01 (s, 2H), 7.80 (dd, *J* = 8.8, 5.9 Hz, 4H), 7.73 (d, *J* = 8.8 Hz, 2H), 7.50 (d, *J* = 16.2 Hz, 2H), 7.29 – 7.21 (m, 2H), 6.97 (d, *J* = 2.4 Hz, 2H), 4.47 (t, *J* = 7.2 Hz, 4H), 3.07 (s, 12H), 1.89 (m, 4H), 1.26 (d, *J* = 19.8 Hz, 16H). ¹³C NMR (126 MHz, DMSO) δ 153.72, 150.06, 144.40, 142.28, 136.43, 130.77, 130.15, 128.86, 127.27, 125.93, 124.40, 123.69, 121.19, 116.99, 105.88, 59.93, 40.59, 40.50, 40.42, 40.33, 40.25, 40.16, 40.09, 40.00, 39.83, 39.66, 39.50, 35.71, 32.69, 30.98, 29.37, 29.30, 28.91, 28.56, 27.97, 27.11, 25.93, 20.31. HRMS: Observed mass: 358.2392; Calculated mass: 358.2404

S12: Spectral copies:

Figure S12a: ¹H NMR of PP

Figure S12b: ¹³C NMR of PP

Figure S12c: ¹H NMR of Styrene 3

Figure S12d: ¹H NMR of NP

Figure S12e: ¹³C NMR of NP

Figure S12g: HRMS of NP

References:

- 1. J. Hong, X. Guan, Y. Chen, X. Tan, S. Zhang and G. Feng, *Anal. Chem.*, 2023, **95**, 5687-5694.
- 2. X. Wu, R. Zhang, Y. Li, Y. Gai, T. Feng, J. Kou, F. Kong, L. Li and B. Tang, *Anal. Chem.*, 2023, **95**, 7611-7619.
- 3. P. Lei, M. Li, C. Dong and S. Shuang, *ACS Biomaterials Science & Engineering*, 2023, **9**, 3581-3589.
- 4. L. Fan, Q. Yang, Q. Zan, K. Zhao, W. Lu, X. Wang, Y. Wang, S. Shuang and C. Dong, *Anal. Chem.*, 2023, **95**, 5780-5787.
- 5. J. Yin, Q. Xu, X. Mo, L. Dai, M. Ren, S. Wang and F. Kong, *Dyes and Pigments*, 2022, **200**, 110184.
- 6. F. Zheng, J. Ding, S. Huang, A. Bi, S. Liu, K. Zhang, F. Chen and W. Zeng, *Dyes and Pigments*, 2023, **217**, 111424.
- 7. X. Xie, Y. Liu, G. Liu, Y. Zhao, J. Bian, Y. Li, J. Zhang, X. Wang and B. Tang, *Anal. Chem.*, 2022, **94**, 10213-10220.