Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Detecting Labile Heme and Ferroptosis Through 'Turn-On' Fluorescence and lipid droplet localization post Fe2+ sensing

Yogesh Dubey[#], Shabnam Mansuri[#] and Sriram Kanvah*

*Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar,

Gujarat - 382055: Email: sriram@iitgn.ac.in

#Equal Authorship

Table of Contents

S1	Synthetic procedure
Figure S2	Response to Fe(II) by NOPy
Figure S3	Absorption and emission titration with varying concentrations of Fe(II) for NOPy
Figure S4	LOD for NOPy and NOCN .
Table S5	Comparison of NOPy and NOCN with several recently reported probes to
	detect Fe ²⁺
Figure S6	Selectivity and strip test of NOCN
Figure S7	Comparative NMR spectra for NPy vs DNO vs NOPy
Figure S8	Cell viability
Figure S9	Solubility test
Figure S10	Response to pH
S11	Characterization data
S12	References

S1. Synthetic procedure

General procedure: NPy/NCN (1 equiv) in chloroform (0.1M) was placed in a roundbottomed flask, and m-CPBA (1 equiv) was added in small portions with the temperature maintained at 0 °C. The reaction mixture was gradually brought to room temperature and stirred for 1 hour until all the starting material was consumed, as monitored on a chromatographic TLC plate. Upon completion of the reaction, chloroform was evaporated using a rotary evaporator, and the residue was directly loaded onto a basic alumina oxide stationary phase, isolated, and weighed"

For NOPy, TLC system -10 % methanol in DCM - Rf (0.45). Column eluent -1 to 8 % gradient elution of methanol in DCM;

For NOCN, TLC system -5 % methanol in Dichloromethane - Rf (0.30); Column eluent -1 to 8 % gradient elution of methanol in Dichloromethane.

The compounds NPy and NCN were synthesized from the literature procedure^{1,2}.

Figure S2. Response to Fe²⁺ by NOPy

Fig. S2 Comparative (A) Absorption spectra of NPy, NOPy, NOPy with Fe^{+2} and (B) Emission spectra for NPy, NOPy, NOPy with Fe^{2+} in DMSO [20 μ M of dye (in DMSO) and 20 μ M of Fe²⁺ (in water)]

Fig. S3 (A) Absorption titration with varying concentration of Fe^{2+} in DMSO (B) Emission titration with varying concentration of Fe^{2+}

Figure S4. Limit of detection

The detection limit of the probe can be calculated using the formula - $\text{LOD} = (3 \text{ x } \text{R}^2)/\text{m}$, where R^2 is R-square and m is the slope of the F/F_0 versus Fe^{2+} concentration. To get the slope, the F/F_0 at 490 nm and 536 nm for NOPy and NOCN, respectively, was plotted against a concentration of Fe^{2+} .

Fig. S4 LOD plot for (A) NOPy and (B) NOCN

Table S5. Comparison of NOPy and NOCN with several recently reported N-oxide probes for the detection of Fe^{2+}

Probe	Time (min)	LOD (µM)	Reference
	Instant	NOPy- 0.035	This work
O ^O I (NOPy)	(~0.16)	NOCN-0.042	
	30	0.81	Metallomics, 2018, 10(6), 794- 801

	15	4.5	Sensors Actuators B: Chem., 2019, 288, 217-224.
	20	0.2	Org. Biomolecular Chem. 2014, 12(34), 6590-6597
	-	0.2	Chemical science, 2013, 4(3), 1250-1256
	5	0.15	Sensors Actuators B: Chem. 2020, 305, 127470.
	30	-	Chem. Science, 2017, 8(7), 4858- 4866
BO'N O O H PPh3	30	1.03	J. Photochem. Photobiol.B: Biol., 2020, 209, 111943
	60	1.02	Chemical Communications, 2019, 55(81), 12136-12139.

Figure S6. Selectivity and strip test of NOCN

Fig. S6 20 μ M probe titration against various 20 μ M of analyte supplemented as their chloride salt (A) Absorption and (B) emission spectra for NOCN with different analytes in DMSO (C) Emission intensity changes for NOPy with Fe(II) compared with analytes [A to T = None, Fe²⁺, Na⁺, K⁺, Cu⁺, Cu²⁺, Ca²⁺, Mg²⁺, Zn²⁺, Co²⁺, Mn²⁺, Ni²⁺, Fe³⁺, Glycine, Glutamine, Histidine, Cysteine, Homocysteine, NaOCl, H₂O₂ and (D) color variations as obtained through chromatographic strip paper (NOCN) in water (Fe²⁺ conc. mentioned on strip paper).

Figure S8. Cytotoxicity assay for NOPy and NOCN at various concentrations.

Fig S9A. Uv-Vis plot for NOPy (left panel) and NOCN (right panel) with increasing concentration of probe in water

Fig S9B. Uv-Vis calibration curve plot for NOPy (left panel) and NOCN (right panel)

Figure S10. Response to pH

Fig. S10 pH response of NOPy and NOCN at various pH

 $[20 \mu M \text{ of dye (in DMSO)} + 20 \mu M \text{ of Fe(II) (in water)}]$ is taken in water of pH-1,3,5,7,9,11,13.

S11. Characterization Data

1. (E)-N,N-dimethyl-4-(2-(pyridin-4-yl)vinyl)aniline oxide (NOPy)

¹**H** NMR (500 MHz, CDCl₃): δ 8.61 (d, J = 5.0 Hz, 2H), 8.02 (d, J = 5.0 Hz, 2H), 7.64 (d, J = 5.0 Hz, 2H), 7.38 (d, J = 5.0 Hz, 2H), 7.31 (d, J = 15 Hz, 1H), 7.07 (d, J = 16.5 Hz, 1H), 3.61 (s, 6H). ¹³**C** NMR (126 MHz; CDCl₃) δ 154.39, 150.19, 143.89, 136.78, 131.19, 127.72, 127.46, 120.85, 120.53, 63.38. **HRMS** (ESI) m/z calcd for C₁₅H₁₇N₂O⁺ [M + H]⁺ 241.1335, found 241.1317. IR in CHCl₃ (cm⁻¹) : 3020, 1595, 1503, 1459, 1418, 1214, 967, 835, 744, 667, 571. Melting point : 145-148 °C.

2. (E)-4-(4-cyanostyryl)-N,N-dimethylaniline oxide (NOCN)

¹**H** NMR (500 MHz, CDCl₃): δ 7.94 (d, J = 8.5 Hz, 2H), 7.55 (m, 6H), 7.15 (d, J = 16.0 Hz, 1H), 7.06 (d, J = 16.0 Hz, 1H), 3.54 (s, 6H). ¹³**C** NMR (126 MHz; CDCl₃) δ 153.31, 140.20, 136.04, 131.53, 129.48, 127.52, 126.43, 126.05, 119.60, 117.87, 110.04, 62.42. **HRMS** (ESI) m/z calcd for C₁₇H₁₈N₂O⁺ [M + H]⁺ 265.1335, found 265.1355. IR in CHCl₃ (cm⁻¹): 3272, 2957, 2920, 2848, 2224, 1601, 1507, 1460, 1417, 1203, 969, 841, 770, 571. Melting point : 171-173 °C.

1. (E)-N,N-dimethyl-4-(2-(pyridin-4-yl)vinyl)aniline oxide (NOPy)

2. (E)-4-(4-cyanostyryl)-N,N-dimethylaniline oxide (NOCN)

S12. References

- Cariati, E., Cavallo, G., Forni, A., Leem, G., Metrangolo, P., Meyer, F., Pilati, T., Resnati, G., Righetto, S., Terraneo, G. and Tordin, E., *Crystal growth & design*, 2011, 11(12), 5642-5648.
- 2. Mukherjee, T., Siva, M. A., Bajaj, K., Soppina, V., & Kanvah, S., J. Photochem. *Photobiol. B: Biol.*, 2020, 203, 111732.
- 3. Y. Dubey, P. Mahalingavelar, D. Rajput, D. J. Shewale, V. Soppina and S. Kanvah, *Org. Biomol. Chem.*, 2023, **21**, 8393-8402.