Electronic Supplementary Information

An Adhesion-Switchable Hydrogel Dressing for Painless Dressing Removal without Secondary Damage

Zhiling Yu,^{a, b} Weiqiang Huang,^b Fei Wang,^c Xuan Nie,^b Guang Chen,^b Lei Zhang,^a Ai-Zong Shen,^{a, *} Ze Zhang,^{b, *} Chang-Hui Wang,^{d, *} Ye-Zi You^{a, b, *}

^a Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China

^b Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China

^c Department of Neurosurgical, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China

^d Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P. R. China.

Sample	QCS	NIPAm	AAm	ТА	PEGDA	2959
	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)
P(AAm-co-NIPAm)	0	18	3	0	0.4	0.2
P(AAm-co-NIPAm)/QCS/TA₀	3	18	3	0	0.4	0.2
P(AAm-Co-NIPAm)/QCS/TA _{0.1}	3	18	3	0.1	0.4	0.2
P(AAm-Co-NIPAm)/QCS/TA _{0.2}	3	18	3	0.2	0.4	0.2
P(AAm-Co-NIPAm)/QCS/TA _{0.4}	3	18	3	0.4	0.4	0.2
P(AAm-Co-NIPAm)/QCS/TA _{0.5}	3	18	3	0.5	0.4	0.2

Fig. S1 The weight fraction of each component in the hydrogel.

Fig. S2 The transmittance of the hydrogels. Transmittance captured at 400 nm wavelength by UV-Vis spectrometer.

Fig. S3 The UV light irradiation time of the P(AAm-co-NIPAm)/QCS/TA_{0.5} hydrogel.

Fig. S4 (A) Frequency dependency of the storage (G') and loss (G") moduli of the P(AAm-co-NIPAm) hydrogel. (B) Frequency dependency of the storage (G') and loss (G") moduli of the P(AAm-co-NIPAm)/QCS/TA₀ hydrogel.

Fig. S5 (A) Photographs of the P(AAm-co-NIPAm)/QCS/TA_{0.4} hydrogel adhered to different complex biological substrates (B) Adhesion strength of the P(AAm-co-NIPAm)/QCS/TA_{0.4} hydrogel on different substrates.

Fig. S6 The relationship between the temperature and adhesion strength of the P(AAm-co-NIPAm)/QCS/TA_{0.4} hydrogel.

Fig. S7 Thermo-responsive switchable adhesion cycles of the $P(AAm-co-NIPAm)/QCS/TA_{0.4}$ hydrogel at low and high temperature.

Fig. S8 Body weight tracking of mice from different treatment groups.