Electronic Supplementary Information

An Adhesion-Switchable Hydrogel Dressing for Painless Dressing Removal without Secondary Damage

 Chang-Hui Wang, d, * Ye-Zi You ${ }^{\text {a, b, * }}$
${ }^{\text {a }}$ Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
${ }^{\text {b }}$ Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
${ }^{\text {c }}$ Department of Neurosurgical, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
${ }^{d}$ Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P. R. China.

Sample	QCS $(\mathrm{wt} \%)$	NIPAm $(\mathrm{wt} \%)$	AAm $(\mathrm{wt} \%)$	TA $(\mathrm{wt} \%)$	PEGDA $(\mathrm{wt} \%)$	2959 $(\mathrm{wt} \%)$
P(AAm-Co-NIPAm)	0	18	3	0	0.4	0.2
P(AAm-co-NIPAm)/QCS/TA	3	18	3	0	0.4	0.2
P(AAm-Co-NIPAm)/QCS/TA	3	18	3	0.1	0.4	0.2
P(AAm-Co-NIPAm)/QCS/TA	3	3	18	3	0.2	0.4
P(AAm-Co-NIPAm)/QCS/TA	3	18	3	0.4	0.4	0.2
P(AAm-Co-NIPAm)/QCS/TA	3	3	18	3	0.5	0.4

Fig. S1 The weight fraction of each component in the hydrogel.

Fig. S2 The transmittance of the hydrogels. Transmittance captured at 400 nm wavelength by UVVis spectrometer.

Fig. S3 The UV light irradiation time of the $\mathrm{P}(\mathrm{AAm}-\mathrm{co}-\mathrm{NIPAm}) / \mathrm{QCS} / \mathrm{TA}_{0.5}$ hydrogel.

Fig. S4 (A) Frequency dependency of the storage $\left(\mathrm{G}^{\prime}\right)$ and loss $\left(\mathrm{G}^{\prime \prime}\right)$ moduli of the P (AAm-coNIPAm) hydrogel. (B) Frequency dependency of the storage (G^{\prime}) and loss ($\mathrm{G}^{\prime \prime}$) moduli of the P(AAm-co-NIPAm)/QCS/TA ${ }_{0}$ hydrogel.

A

Skin with heavy hair Contaminated skin

Wet skin

B

Fig. S5 (A) Photographs of the $\mathrm{P}(\mathrm{AAm}-\mathrm{co}-\mathrm{NIPAm}) / \mathrm{QCS} / \mathrm{TA}_{0.4}$ hydrogel adhered to different complex biological substrates (B) Adhesion strength of the $\mathrm{P}(\mathrm{AAm}-\mathrm{co}-\mathrm{NIPAm}) / \mathrm{QCS} / \mathrm{TA}_{0.4}$ hydrogel on different substrates.

Fig. S6 The relationship between the temperature and adhesion strength of the $\mathrm{P}(\mathrm{AAm}$-coNIPAm)/QCS/TA ${ }_{0.4}$ hydrogel.

Fig. S7 Thermo-responsive switchable adhesion cycles of the $\mathrm{P}(\mathrm{AAm}-\mathrm{co}-\mathrm{NIPAm}) / \mathrm{QCS} / \mathrm{TA}_{0.4}$ hydrogel at low and high temperature.

Fig. S8 Body weight tracking of mice from different treatment groups.

