Supporting information

Persistent luminescence nanoparticles with high intensity for colorectal cancer surgery navigation and precision resection

Table of contents

1. Results and Discussion

 Figure S1. The scheme of MOF-template method for ZGC preparation
 Figure S2. The FT-IR of ZGC-NH
 Figure S3. Linear plot of folic acid concentration versus absorbance values with the corresponding linear regression fit ($R^2=0.99$)
 Figure S4. The comparation of PersL curve of ZGC and ZGC-NH
 Figure S5. The comparation of PersL curve of ZGC and ZGC-FA
 Figure S6. The photostability of ZGC-FA under repeated white light excitation.
 Figure S7. The cytotoxicity of ZGC and ZGC-FA
 Figure S8. The spectrum of commercial LED lights.
 Figure S9. The signal-to-noise (SNR) ratio in PersL imaging of mouse tumor (yellow: tumor; blue: noise; The SNR is 23.9)

Results and discussion

Figure S1. The scheme of MOF-template method for ZGC preparation

1
Figure S2. The FT-IR of ZGC-NH$_2$.

Figure S3. Linear plot of folic acid concentration versus absorbance values with the corresponding linear regression fit ($R^2=0.99$).
Figure S4. The comparison of PersL curve of ZGC and ZGC-NH₂

Figure S5. The comparison of PersL curve of ZGC and ZGC-FA
Figure S6. The photostability of ZGC-FA under repeated white light excitation.

Figure S7. The cytotoxicity of ZGC and ZGC-FA
Figure S8. The spectrum of commercial LED lights.

Figure S9. The signal-to-noise ratio (SNR) for preoperative (a-b) and intraoperative PersL imaging (c) (yellow: tumor; blue: noise; the average SNR is 17.6)

Figure S10. Non-targeted ZGC tumor imaging in mice
Figure S11. PersL imaging of major organs after 14 days

Figure S12. The Weight changes in mice over a period of 7 days (n=5)

Reference