Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Accelerated Dermal Wound Healing in Diabetic Mice by H₂O₂-Generating

Catechol-Functionalized Gelatin Microgel

Pegah Kord Forooshani, Fatemeh Razaviamri, Ariana Smies, Lea Morath, Rattapol Pinnaratip, Md Saleh Akram Bhuiyan, Rupak Rajachar, Jeremy Goldman, Bruce P. Lee *

Depart of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931

Corresponding author: Bruce P. Lee (bplee@mtu.edu)

Formation of Hydrogel Film

Figure S1. Photographs of (A) the silicon rubber mold created over a glass slide and (B) hydrogel film

after removing the mold.

ELISA Assay

Figure S2. Standard curves for vascular endothelial growth factor (VEGF) concentration at a wavelength of 450nm.

Characterization of Microgels

Figure S3. ATR-FTIR spectra of microgels. The peaks at 868 and 922 cm⁻¹ (red and black dashed line, respectively) are associated with the out-of-plane bending of =C-H bonds of an aromatic ring that exists in catechol. The peak at 1540 and 1640 cm⁻¹ (blue and green dashed line) are attributed to the amide N-H bending vibration and C=O stretching of amide groups, respectively, which exist in both DOPAC and gelatin.

Figure S4. UV-vis analysis to determine catechol contents in the microgels. (A) Standard curves for DOPAC at a wavelength of 280 nm. (B) Weight % of DOPAC in each catechol-modified microgel. *p < 0.001 when compared to other microgels.

Rhelogical Assessment

Figure S5. *G*' (solid lines) and *G*'' (dashed lines) for (A) G, (B) G-2CA, (C) G-4CA, and (D) G-8CA tested at a frequency of 0.1 Hz. The thicker lines represent microgel suspensions tested immediately after hydration while the thinner lines represent hydrogel films that were incubated at 37°C for 48 hours.

Figure S6. tan δ for (A) G, (B) G-2CA, (C) G-4CA, and (D) G-8CA tested at a frequency of 0.1 Hz. The thicker lines represent microgel suspensions tested immediately after hydration while the thinner lines represent hydrogel films that were incubated at 37°C for 48 hours.

Sample	Time Point (h)	tan δ at 0.01% Strain	% Strain at <i>G'-G"</i> Crossover
G	0	0.0594	3.14
	48	0.0342	2.10
G-2CA	0	0.0557	5.00
	48	0.0368	2.16
G-4CA	0	0.0626	3.81
	48	0.0303	1.63
G-8CA	0	0.0589	2.81
	48	0.0180	0.76

Table S1. Rheological data for microgel suspension tested at time = 0h and hydrogel films after incubation for 48 h at 37°C.

Antibacterial Assay

Figure S7. Photograph of the test plates with *S. epidermidis* colonies exposed to 5 v/v% broth (control) and gelatin microgels taken at different time points.