Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Effect of Surface-engineered AuNPs on gene expression, bacterial interaction, protein denaturation, and toxicology assay: An *in vitro* and *in vivo* model

A. Sowndarya,^a T. Daniel Thangadurai,^{*a} Nebu George Thomas,^{b,c} Renjith Sreedharan,^d Sukumaran Anil,^{b,e} N. Manjubaashini,^f T. G. Satheesh Babu,^g and S. Megha Kumar^g

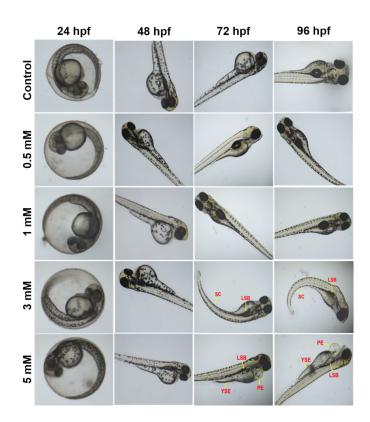
^aDepartment of Chemistry and Centre for Research and Development, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamilnadu, India.

^bPushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla 689101, Kerala, India.

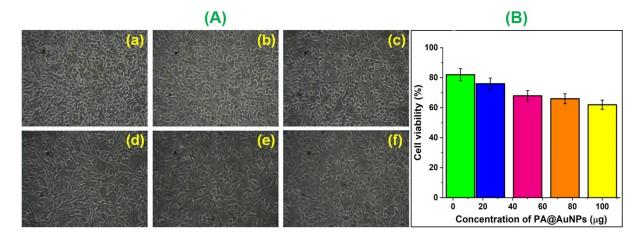
^cPushpagiri College of Dental Sciences, Thiruvalla 689101, Kerala, India.

^dJubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India.

^eOral Health Institute, Department of Dentistry, Hamad Medical Corporation Doha, Qatar.


^fNational Centre for Nanoscience and Technology, University of Madras, Chennai 600025, India.

§Amrita Biosensor Research Lab, Amrita Vishwa Vidyapeetham, Coimbatore 641112, Tamilnadu, India.


*Corresponding author: Email: danielthangadurai.t@kpriet.ac.in.: Tel.: +91 422 263 5600.

1. Synthesis of PA@AuNPs

Scheme SI1. Synthesis of PA@AuNPs (inset images: corresponding reaction solutions under daylight and UV light).

Figure SI1. Morphological changes in zebrafish embryos affected by various concentrations of PA@AuNPs (0.5, 1, 3, and 5 mM). The control showed normal development of an embryo, and the PA@AuNPs exposed to the embryo showed deformities like SC-spinal curvature, LSB-lack of the swim bladder, YSE-yolk solk edema, and PE-pericardial edema.

Figure S12. (A) The cytotoxic effect of PA@AuNPs (0, 5, 25, 50, 75, and 100 μL) with L929 fibroblast cells by the standard MTT viability assay. L929 fibroblast cells were incubated with PA@AuNPs for 24 h (images (a) untreated L929 fibroblast cells, (b) L929 fibroblast cells + 5 μL PA@AuNPs, (c) L929 fibroblast cells + 25 μL PA@AuNPs, (d) L929 fibroblast cells + 50 μL PA@AuNPs; (e) L929 fibroblast cells + 75 μL PA@AuNPs, and L929

fibroblast cells + 100 μ L PA@AuNPs, respectively). (B) Evaluation of cell viability of PA@AuNPs (0, 5, 25, 50, 75, and 100 μ g) by the standard MTT assay.

2. Method

2.1. Cell culture

The cell line was cultured in a 25 cm² tissue culture flask with DMEM supplemented with 10% FBS, L-glutamine, sodium bicarbonate, and an antibiotic solution containing, Penicillin (100U/ml), Streptomycin (100µg/ml), and Amphoteracin B (2.5µg/ml). Cultured cell lines were kept at 37 °C in a humidified 5% CO₂ incubator. The viability of cells was evaluated by direct observation of cells by an inverted phase contrast microscope and followed by the MTT assay method.

2.2 Cells seeding in 96 well plates

A two-day-old confluent monolayer of cells was trypsinized and the cells were suspended in 10% growth medium, 100 μ L cell suspension (5x10³ cells/well) was seeded in 96 well tissue culture plate and incubated at 37 °C in a humidified 5% CO₂ incubator.

2.3. Isolation of total RNA by TRIzol Method

A total RNA sample was isolated following the manufacturer's instructions. By adding TRIzol solution, cells are disrupted and release RNA. As a result of adding isopropanol, RNA precipitates as a white pellet around the tube's sides and bottom. After adding 1 ml of TRIzol reagent, the culture well plate was incubated for 5 min. This mixture was transferred to a new, sterile Eppendorf tube, and 200 µL of chloroform was added. It was then forcefully shaken for 15 sec and allowed to incubate for two to three minutes at ambient temperature. Finally, it was centrifuged for fifteen minutes at 4 °C at 14000 rpm. After gathering the obtained aqueous layer, 500 µL of 100% isopropanol was added, and the mixture was incubated for 10 minutes at ambient temperature before being centrifuged for 15 min at 4 °C at 14000 rpm. The pellet was cleaned with 200 µL of 75% ethanol after the supernatant was removed, and it was then centrifuged for five minutes at 4 °C at 14000 rpm in a cooling centrifuge. After drying the RNA pellet was suspended in TE buffer.

2.4. cDNA Synthesis

With the TRIzol reagent, total RNA was isolated, and then total RNA's concentration and purity were assessed. With the help of a cDNA preparation kit, the template

complementary DNA was synthesized. About 5 μ L of RT easy mix, 0.5 μ L of oligodT, and an RNAse-free tube were filled with 2 L of RNA template (0.5 g total RNA). Then the total reaction solution was made up to 10 μ L with the addition of sterile distilled water, and then the solution was mixed gently. For, cDNA synthesis by using a thermal cycler. The cycling conditions were applied for 20 min at 42 °C and 5 min at 85 °C (Table SI1).

Table SI1. Temperature and time variations in cycling conditions.

Step	Temperature °C	Time (minutes)	No. of cycles
Synthesis of cDNA	42	20	1
Inactivation	85	5	1

3. Characterization

Table SI2. Statistical analysis of anticancer assay by MTT Method

Cell line	- MDA	MB 23	1						
SAMPLI	E CODI	E							
	OD1	OD2	OD3	% viability 1	% viability 2	% viability 3	Average	Stdev	Std error
Control	0.72	0.72	0.71	100	100	100	100	0	0
6.25	0.61	0.62	0.62	84.52	85.50	87.44	85.82	1.48	0.49
12.5	0.51	0.51	0.51	70.03	70.93	71.13	70.70	0.58	0.19
25	0.41	0.40	0.40	57.55	54.94	56.15	56.21	1.30	0.43
50	0.34	0.33	0.33	47.50	45.47	46.25	46.41	1.02	0.34
100	0.23	0.22	0.22	32.80	31.34	31.92	32.02	0.73	0.24

Table SI3. Statistical analysis of Gene expression study

	Experi mental Well 1	Experi mental Well 2	Experi mental Well 3	Contro l Well 1	Control Well 2	Contro 1 Well 3	Average Experim ental Ct Value	Average Experim ental Ct Value	Average Control Ct Value	Average Control Ct Value	ΔCt Value (Experi mental)	ΔCt Value (Control)	Delta Delta Ct Valu e	Expressi on Fold Change
	Raw Ct Value	Raw Ct Value	Raw Ct Value	Raw Ct Value	Raw Ct Value	Raw Ct Value	TE	НЕ	ТС	НС	ACTE	ΔCTC	ΔΔCt	2^-ΔΔCt
Housekee ping Gene	20.43	20.16	20.38	22.29	22.08	22.24	-	20.32	-	22.20		6.96		
Gene being Tested	27.88	27.59	27.26	29.35	29.06	29.08	27.58	-	29.16	-	7.25		0.29	0.816014 485

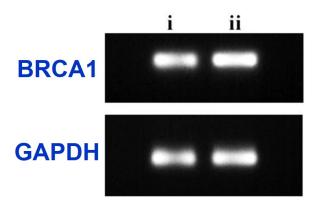


Figure SI3. Agarose gel electrophoresis image of GAPDH and BRCA1.

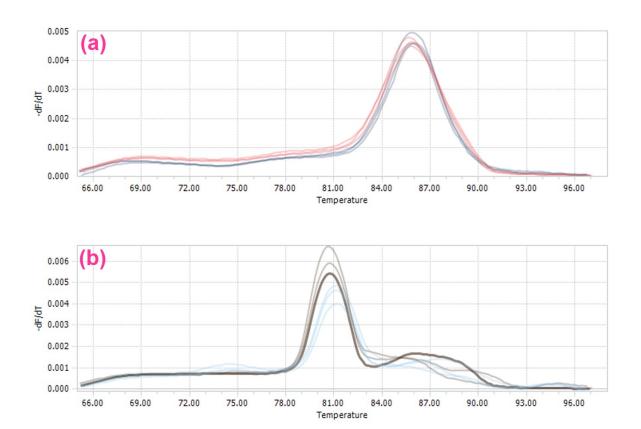
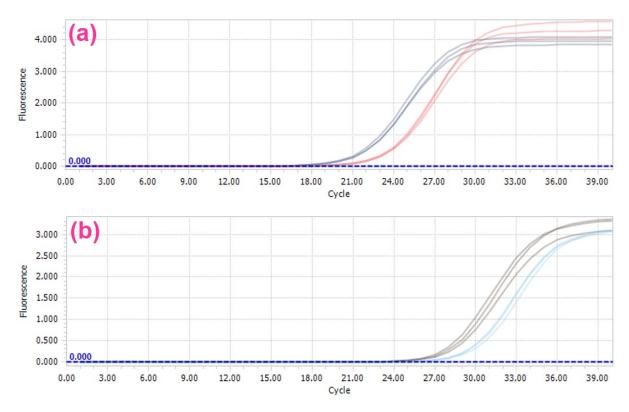



Figure SI4. Real-time melting peaks of PA@AuNPs, (a) GAPDH and (b) BRCA – 1.

Figure SI5. Real-time amplification curves of PA@AuNPs, (a) GAPDH and (b) BRCA – 1.

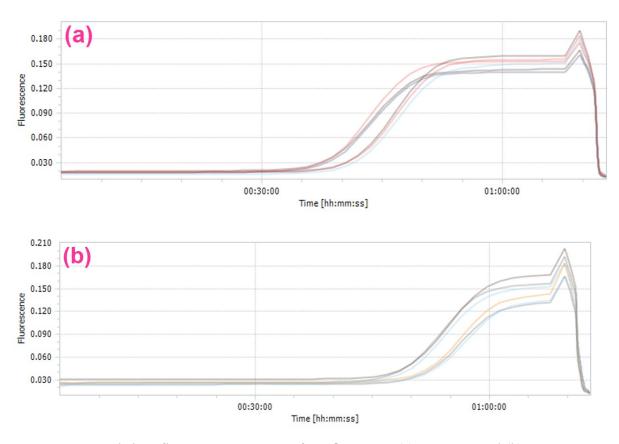


Figure SI6. Real-time fluorescence curves of PA@AuNPs, (a) GAPDH and (b) BRCA – 1.

Table SI4. The various steps involved, the time taken, and the temperature of each step.

Steps	Time required	Temperatur
		e
Initial activation step	2 min	95 ℃
3 step cycling		
Denaturation	10 sec	95 °C
Annealing	1 min	58 °C
Extension	1 min/kb	72 °C
Number of cycles	40 cycles	68 °C
End of PCR cycling	Indefinite	4 °C

Table SI5. Gross morphological changes in vital organs after acute toxicity testing of PA@AuNPs in Sprague-Dawley rats

	Groups						
Parameters	Control			PA@AuNPs			
	Heart	Liver	Kidney	Heart	Liver	Kidney	
Organ	1.06	11.07	1.08 ±	1.04	11.69	1.08 ±	
Weight	±	土	0.12	土	土	0.04	
(gms)	0.24	1.02	0.12	0.12	1.19	U.U 4	
Discoloration	Nil	Nil	Nil	Nil	Nil	Nil	
Lesion	Nil	Nil	Nil	Nil	Nil	Nil	
Structural change	Nil	Nil	Nil	Nil	Nil	Nil	

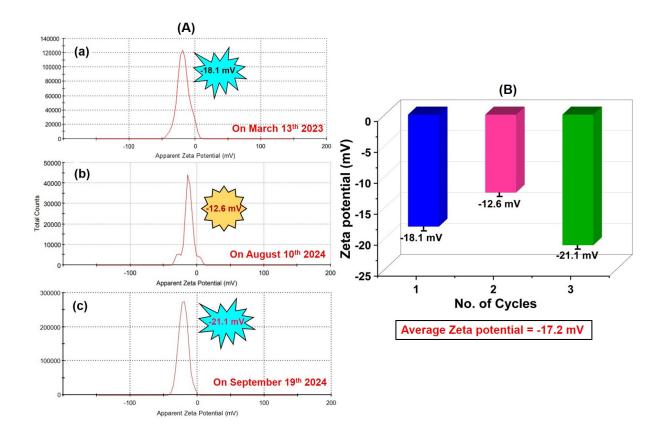
Table SI6. Histological scoring of stained organ sections after acute toxicity testing

Sl.	Group	Organs			
No.		Heart	Liver	Kidney	
1	Control	0	0	0	
2	PA@AuNPs	0	0	0	

Table SI7. Parameters under consideration during acute toxicity study.

		Control	PA@AuNP	
Sl. No.	Parameters	(Out of	S	
		5	(Out of 5	

		animals)	animals)
1	Mortality	0	0
2	Convulsions	0	0
3	Weight loss (≥ 2g)	0	0
4	Salivation	0	0
5	Piloerection	0	0
6	Abnormal Reflexes	0	0
7	Gastro-intestinal abnormality	0	0
8	Muscular tone	0	0
9	Motor Control	0	0
10	Analgesia	0	0


Table SI8. Gross morphology surrounding PA@AuNPs after subcutaneous implantation.

Sl.	Parameter	PA@AuNPs			
No.	1 al allictel	Week 2	Week 4		
1	Edema	Nil	Nil		
2	Hemorrhage	Nil	Nil		
3	Pus or discharge	Nil	Nil		
4	Lesion or ulceration	Nil	Nil		
5	Necrosis of adjacent tissue	Nil	Nil		
6	Vascularization	moderate	excellent		

Table SI9. Comparative table of AuNPs for in vitro and in vivo analysis.

S. No.	Materials used	In vitro and in vivo	Ref.
110.		mouers	
1	AuNPs	TNBC – MDA-MB-231	1
2	AuNPs	TNBC – MDA-MB-231	2
3	Polyethylene Modified Au-based SiRNA	TNBC – MDA-MB-231	3

4	Thioglucose-bound AuNPs	TNBC – MDA-MB-231	4
5	AuNPs	BC – MCF-7	5
6	AuNPs	TNBC – MDA-MB-231	6
7	Citrate-capped-AuNPs	TNBC – MDA-MB-231	7
8	Au-Curcumin (Au-C), Au-Paclitaxel (Au-P), Au-Curcumin-Paclitaxel (Au-CP)	TNBC – MDA-MB-231	8
9	AuNPs	foodborne bacterial pathogens	9
10	A-AuNPs and M-AuNPs	E. coli, MDR E. coli, P. a, MDR P. a, MDR K. p	10
11	Polyelectrolyte-wrapped AuNPs	Shewanella oneidensis and Bacillus subtilis	11
12	AuNPs (1000 mg /kg)	Mice and Rats	12
13	Pectin-mediated-AuNPs 500 – 1000 μg	Sprague Dawley Rats	13
14	AuNPs 0.9, 9, 90 μg	Sprague Dawley Rats	14
15	PA@AuNPs	TNBC – MDA-MB-231, Sprague Dawley Rats, Bacterial species, and Protein denaturation	Current work

Figure SI7. (A) Different time interval measurements of zeta potential of PA@AuNPs (Average zeta potential = -17.2 mV), (B) Corresponding bar graph (n = 3%).

Reference

- 1. Akter Z, Khan FZ, Khan MA. Gold nanoparticles in triple-negative breast cancer therapeutics. Current Medicinal Chemistry. 2023, 30, 316-34.
- 2. Surapaneni SK, Bashir S, Tikoo K. Gold nanoparticles-induced cytotoxicity in triple negative breast cancer involves different epigenetic alterations depending upon the surface charge. Scientific reports. 2018, 8, 12295.
- 3. Shahbazi R, Asik E, Kahraman N, Turk M, Ozpolat B, Ulubayram K. Modified gold-based siRNA nanotherapeutics for targeted therapy of triple-negative breast cancer. Nanomedicine. 2017, 16, 1961-73.
- 4. Wang C, Jiang Y, Li X, Hu L. Thioglucose-bound gold nanoparticles increase the radiosensitivity of a triple-negative breast cancer cell line (MDA-MB-231). Breast cancer. 2015, 413-20.
- 5. Abdel-Ghany S, Mahfouz M, Ashraf N, Sabit H, Cevik E, El-Zawahri M. Gold nanoparticles induce G2/M cell cycle arrest and enhance the expression of E-cadherin in breast cancer cells. Inorganic and Nano-Metal Chemistry. 2020, 50, 926-32.
- 6. Haynes B, Zhang Y, Liu F, Li J, Petit S, Kothayer H, Bao X, Westwell AD, Mao G, Shekhar MP. Gold nanoparticle conjugated Rad6 inhibitor induces cell death in triple negative breast cancer cells by inducing mitochondrial dysfunction and PARP-1 hyperactivation: Synthesis and characterization. Nanomedicine: Nanotechnology, Biology and Medicine. 2016, 12, 745-57.
- 7. Farhana A, Alsrhani A, Rasheed N, Rasheed Z. Gold nanoparticles attenuate the interferon-γ induced SOCS1 expression and activation of NF-κB p65/50 activity via modulation of microRNA-155-5p in triple-negative breast cancer cells. Frontiers in Immunology. 2023, 14.
- 8. Chandran, K., Song, S. and Yun, S.I., 2019. Effect of size and shape controlled biogenic synthesis of gold nanoparticles and their mode of interactions against food borne bacterial pathogens. *Arabian Journal of Chemistry*, 12, 1994-2006.

- 9. Feng ZV, Gunsolus IL, Qiu TA, Hurley KR, Nyberg LH, Frew H, Johnson KP, Vartanian AM, Jacob LM, Lohse SE, Torelli MD. Impacts of gold nanoparticle charge and ligand type on surface binding and toxicity to Gram-negative and Grampositive bacteria. Chemical science. 2015, 6, 5186-96.
- 10. Suganya KU, Govindaraju K, Sivaraman D, Selvaraj R, Manikandan R, Ganesh Kumar V. Nanotoxicity assessment of functionalized gold nanoparticles in Sprague–Dawley rats. Journal of cluster science. 2017, 2933-51.
- 11. Rambanapasi C, Zeevaart JR, Buntting H, Bester C, Kotze D, Hayeshi R, Grobler A. Bioaccumulation and subchronic toxicity of 14 nm gold nanoparticles in rats. Molecules. 2016 Jun 10;21(6):763.
- 12. Biological evaluation of medical devices part 10: Tests for irritation and skin sensitisation. Geneva, Switzerland: International Organization for Standardization, **2010**, ISO 10993-10:2010.
- 13. Biological evaluation of medical devices part 11: Tests for systemic toxicity. Geneva, Switzerland: International Organization for Standardization. 2017, ISO 10993-11:2017.
- 14. Williams, D. F. On the mechanisms of biocompatibility, *Biomaterials*, **2008**, 29, 2941.