Supporting Information

Phage amplification-assisted SEA-CRISPR/Cas12a system for viable

bacteria detection

Xiangyang Xiao^{1a}, Chenlu Zhang^{1a}, Li Zhang^a, Chen Zuo^a, Wei Wu^a, Fumei Cheng^a,

Di Wu^a, Guoming Xie^a, Xiang Mao^{b*}, Yujun Yang^{a*}

^a Key Laboratory of Medical Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, P. R. China

^b State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China.

¹ These authors contributed equally to this work

*Correspondence authors:

Yujun Yang, Key Laboratory of Medical Diagnostics of Ministry of Education, College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, P. R. China

Orcid.org/0000-0002-56377304, Email: yangyujun@cqmu.edu.cn

Xiang Mao, College of Biomedical Engineering, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, P.R. China

E-mail address: maox@cqmu.edu.cn

Material:

PAP was a gift provided by the third Military Medical University (Chongqing, China), was isolated from the sewage of Southwest Hospital (Chongqing, China) based on lambda bacteriophage isolation protocol. The bacteriophage titer was measured by the standard plaque assay.

Methods:

1. PAP genome acid extraction and purification

1.1 pure DNA extraction

The Phenol-chloroform extraction method was used to extract genomic DNA from PAP. DNA concentration was determined using a Bio Photometer, and DNA integrity was assessed using 2% agarose gel electrophoresis. Subsequently, the DNA solution was diluted with ddH₂O to a concentration of 10 ng/ μ L, according to the measured DNA concentration, and stored at -20°C for further analysis.

1.2 crude DNA extraction

For rapid genomic DNA extraction, a simple thermal lysis DNA extraction protocol was selected for ease of use and rapidity. Briefly, 1 mL of the PAP sample was taken and heated at 100°C for 10 min. Then, the samples were centrifuged at 8000×g for 10 min and 4°C. The supernatant was transferred to a new tube and stored at -20°C for further analysis.

2.Preparation of Fe₃O₄@UiO-66-NH₂@CPBA magnetic bead

Based on our group's previous work¹, Fe₃O₄ was firstly synthesized. FeCl₃·6H₂O (2.0 g) was dissolved in ethylene glycol (20 mL) and diethylene glycol (DEG, 20 mL) to form a faint yellow clear solution, followed by addition of poly (ethylene glycol) (average MW = 800 Da, 2.0 g) and sodium acetate (3.0 g). The yellow mixture was stirred vigorously for 30 min, and then divided and sealed in a 20 mL Teflon autoclaves, which were heated at 200°C for 6 h. The black products were separated by a permanent magnet, washed three times with ethanol and re-suspended in 50 mL ethanol for further use.

And then 10 mL of as-washed Fe_3O_4 was exchanged into 45 mL N, Ndimethylformamide (DMF) through three repeated magnetic separation/re-dispersion. After that, $ZrOCl_2 \cdot 8H_2O$ (161 mg), 2-aminoterephthalic acid (NH₂-BDC, 90 mg), and 5 mL glacial acetic acid were added successively. The mixture was mechanically stirred at 120°C for 12 h. The brown products (Fe₃O₄@UiO-66-NH₂) were separated by a permanent magnet, washed three times with DMF and ethanol successively before final lyophilization and storage at 4°C.

Finally, carboxyphenylboronic acid (CPBA) with a carboxyl group can be modified with the amino group of nanoprobes by EDC/NHS chemistry. Specifically, 4carboxyphenylboronic acid (200 mg) was dissolved in DMSO (15 mL) by sonication. Then, EDC (40 mg), NHS (80 mg), and DMSO (5 mL) were added to the above solution and mechanically stirred at room temperature for 30 minutes. Subsequently, the mentioned $Fe_3O_4@UiO-66-NH_2$ nanoparticles (50 mg) were added above. The reaction was then carried out at room temperature with mechanical stirring for 24 hours. The products ($Fe_3O_4@UiO-66-NH_2@CPBA$) were washed sequentially with water and ethanol and finally dispersed in 10 ml of ddH₂O at a concentration of 5 mg/mL.

3. Optimization of the dosage of magnetic bead

P. aeruginosa was diluted to 10⁴ CFU/mL with Tris-HCl (20 mM, pH=7.4), 1 mL of bacterial suspension was taken from each tube, and 40, 60, 80, and 100 μ L of magnetic beads were added respectively. Following sufficient mixing with a vortex oscillator, the sample was incubated in a constant temperature shaker (37°C, 180 r/min) for 30 minutes. Subsequently, magnetic separation was conducted for 5 minutes, after which the supernatant was transferred to a new 1.5 mL centrifuge tube. The magnetic beads were then resuspended with 1 mL Tris-HCl buffer and diluted to 10³ CFU/mL. A volume of 0.1 mL of the supernatant and the isolation solution were aspirated uniformly. The beads were coated on LB solid medium and placed in a constant temperature incubator (37°C) for 12 h. The number of *P. aeruginosa* colonies in the supernatant and resuspension was obtained by plate counting. The capture efficiency was calculated according to the following formula: The capture efficiency (CE) is calculated using the following formula: CE (%) = [1-M/(M+S)] × 100, where S is the number of colonies in the resuspension-coated plate. M is the number of colonies in the supernatant-coated plate.

4. Optimization of incubation time for magnetic beads and bacteria

P. aeruginosa was diluted to 10^4 CFU/mL with Tris-HCl (20 mM, pH=7.4), and 1 mL of bacterial suspension was added to each tube respectively, and 80 µL of magnetic beads were added. After sufficient mixing with a vortex oscillator, it was incubated in a constant temperature shaker (37°C, 180 r/min) for 15, 20, 25, and 30 min, followed by magnetic separation for 5 min, and plate coating and capture efficiency calculations are the same as in the previous steps.

5. Capture efficiency of magnetic beads for different concentrations of bacteria

The *P. aeruginosa* was diluted to 10^6 , 10^5 , 10^4 , and 10^3 CFU/mL with Tris-HCl (20 mM, pH=7.4) in a gradient, and 1 mL of bacterial suspension was added to each tube respectively, and 80 µL of magnetic beads were added. After sufficient mixing with a vortex shaker, the sample was incubated in a constant temperature shaker (37°C, 180 rpm/min) for 15 min, followed by magnetic separation for 5 min. the supernatant was transferred to a new 1.5 mL centrifuge tube, and the magnetic beads were resuspended in 1 mL Tris-HCl buffer. In order to facilitate the subsequent counting, the resuspended solution was diluted to 10^3 CFU/mL, and the supernatant was diluted to 10^4 CFU/mL. Plate coating and capture efficiency calculations are the same as in the previous steps.

6. Preparation of Rhodamine-labeled Phage Probe

Rhodamine-labeled phage PAP (Rhodamine-PAP) is prepared via EDC/NHS chemistry. Firstly, 60 μ L of Rhodamine solution (20 mg/mL) and adding 140 μ L of PBS (pH 6.8). EDC solution (10 mg/mL) and freshly prepared NHS solution (5 mg/mL) were prepared in PBS (pH 6.8), and 200 μ L of each solution was added to the Ep tube, and the reaction was carried out at 37°C and 180 rpm for 30 minutes. Then, phage PAP solution (10¹⁰ PFU/mL, 600 μ L) was added to the Ep tube and shaken for 12 hours. Finally, purification was performed using a dialysis bag and PBS buffer (pH 7.2-7.4) to remove excess dye and collect the purified Rhodamine-PAP and keep at 4°C for further use.

7. Fluorescence co-localization of bacteria and phage

Bacteria (*P. aeruginosa* and *A. baumannii*, 10^8 CFU/mL) were labeled with Hoechst (20 µg/mL) dye at 37°C for 20 min, followed by removal of excess dye by centrifugal washing and capture of bacteria with magnetic beads ($80 \mu L$, $37^{\circ}C$, $15 \min$). Subsequently, $50 \mu L$ of Rhodamine-PAP was added and incubated for $15 \min$ at $37^{\circ}C$. Unbound Rhodamine-PAP was removed by washing with Tris-HCl buffer and magnetic separation for 5 min, and the final slide was prepared for fluorescence observation.

8. Urine collection and culture

Mid-stream urine was collected from volunteers using a sterile container. For urine cultures, specimens were processed immediately after collection to prevent contamination and minimize the impact of bacterial die-off on results. Typically, the urine sample was gently shaken, and a 10 μ L aliquot was inoculated onto an LB plate. The plate was then incubated at 37°C for 18–24 hours, after which colony formation was observed and quantified by plate counting.

Figure S1. 2% agarose gel electrophoresis of extracted PAP DNA.

Figure S2. Target, primer, crRNA design, and primer specificity validation. (A) Illustration of Target selection, primer design, and crRNA design. (B) Endpoint fluorescence of the reaction of primer F2 (50 nM) with different concentrations of Cas12a (25 nM, 50 nM, 100 nM). (C) Kinetic results of the reaction of primer F2 (50 nM) with different concentrations of Cas12a (25 nM, 50 nM, 100 nM). Positive control (Cas12a/crRNA+dsDNA mimic target, denoted as PC), Negative control (Cas12a/crRNA-dsDNA mimic target, denoted as NC).

Figure S3. SEA Amplification Parameter Optimization of (A) temperature, (B) primer concentration, (C) magnesium ion concentration and (D) enzyme amount.

Figure S4. Reaction kinetics of the SEA-Cas12a assay for detecting different concentrations of PAP genomic DNA (A) and for detecting PAP particle (B).

Figure S5. Sensitivity of single SEA for detecting phage particles.

Figure S6. Sensitivity of single CRISPR/Cas12a for the detection of PAP particle. (A) Kinetic results of PAP detection at different concentrations. (B) Endpoint Fluorescence measurement for PAP detection at different concentrations.

Figure S7. (A) Schematic of magnetic bead (Fe₃O₄@UiO-66-NH₂@CPBA) synthesis. (B) Photographs of the magnetic beads in the absence and presence of an applied magnetic field. (C) TEM characterization of magnetic bead. (D) The magnetic responses of magnetic beads.

Figure S8. Validation of magnetic bead capture performance. (A) The optimum volume of Magnetic bead(5mg/mL). (B) Incubation time optimization. (C) Capture efficiency for different concentrations (10³, 10⁴, 10⁵, 10⁶ CFU/mL) of bacteria. (D) Plate counting results after capture and isolation of different concentrations of bacteria (10³, 10⁴, 10⁵, 10⁶ CFU/mL). 10⁴, 10⁵, and 10⁶ CFU/mL bacteria were coated with the corresponding precipitates diluted to 10³, and the supernatants were coated with the supernatants diluted to 10⁴; the supernatants and resuspensions of 10³ CFU/mL were coated with the plates directly.

Figure S9. Phage specificity validation. Magnetic bead-based capture of target and nontarget bacteria and fluorescence co-localization of phage (Rhodamine-PAP) with target (*P. aeruginosa*) and non-target bacteria (*A. baumannii*). Scale bars, 70 µm.

	1
Name	Sequence (5'-3')
	ACAGAAAATAAATGCTTGACAGCCTAGGCCATTCCT
Target	GTAGAATGGCCCTCAAGCAAGACAAACCGCCCATTA
	GGAGGCTAGAAATGAAAAGCTTAGTCA
mimic target-F	ATTCCTGTAGAATGGCCCTCAAGCAAGACAAACCGC
	CCAT
mimic target-R	ATGGGCGGTTTGTCTTGCTTGAGGGCCATTCTACAGG
	AAT
T7-crRNA	TGTAGAATGGCCCTCAAGCAAGAATCTACACTTAGT
	AGAAATTACCCTATAGTGAGTCGTATTAATTTC
T7-crRNA-F	GAAATTAATACGACTCACTATAGGG
crRNA	UAAUUUCUACUAAGUGUAGAUUCUUGCUUGAGGGC
	CAUUCUACA
Forward primer 1(F1)	ACAGAAAATAAATGCTTGACAGCCTA
Reverse Primer 1(R1)	TGACTAAGCTTTTCATTTCTAGCCTC
Forward primer2 (F2)	ATTCCTGTAGAATGGCCCTCA
Reverse Primer2 (R2)	ATGGGCGGTTTGTCTTGC
ssDNA Reporter	FAM-TTATTCCCCC-BHQ1

Table S1. Customized nucleic acids sequence.

Preamplification method	Cas type	Target	LOD	Reference			
Multienzyme Isothermal Rapid Amplification (MIRA)	LbCas12a	<i>Е. coli</i> O157:H7	6.5×10 ⁴ CFU/mL	2			
thermophilic Helicase-Dependent Amplification (tHDA)	LbCas12a	<i>E. coli</i> O157:H7	10 ³ CFU/g	3			
dUTP-LAMP	AapCas12b	Salmonella	2.33×10 ⁴ CFU/mL	4			
Competitive Annealing mediated isothermal Amplification (CAMP)	Cas14a	S. pyogenes	10 ³ CFU/mL	5			
Strand Invasion Based Amplification (SIBA)	LbCas12a	Bacillus anthracis Sterne	10 ⁵ CFU/mL	6			
PCR	LbCas12a	S. aureus	10 ³ CFU/mL	7			
SEA-Cas12a	LbCas12a	Phage	4×10 ² copy/μL	This study			

 Table S2 Comparison of different amplification methods combined with CRISPR/Cas

 system

Sample1	0.959x10 ⁵ CFU	Sample11	6.48x10 ⁴ CFU
Sample2	4.55x10 ⁴ CFU	Sample12	6.15x10 ⁴ CFU
Sample3	3.4x10 ⁴ CFU	Sample13	500 CFU
Sample4	0.8x10 ⁵ CFU	Sample14	833 CFU
Sample5	0.765x10 ⁵ CFU	Sample15	466 CFU
Sample6	5.83x10 ⁴ CFU	Sample16	433 CFU
Sample7	5.12x10 ⁴ CFU	Sample17	566 CFU
Sample8	0.75x10 ⁵ CFU	Sample18	600 CFU
Sample9	5.01x10 ⁴ CFU	Sample19	700 CFU
Sample10	4.54x10 ⁴ CFU	Sample20	300 CFU

 Table S3 Results of plate culture count

Method	Target bacteria	Target molecule	Sample type	Assay time (h)	LOD	Refer ences
Phage amplification assay / qPCR	Salmonella Enteritidis	DNA of phage	chicken	10 h	<10 CFU/25g	8
Phage amplification assay / multiplex qPCR	Salmonella enterica, Staphylococcus aureus	DNA of phage	Milk and lettuce	<4 h	10 CFU/mL	9
Phage amplification assay /LAMP	Salmonella Enteritidis	DNA of phage	chicken breast	≈8 h	1.1 CFU/25 g	10
Phage-assisted bacteria enrichment / qPCR	Salmonella	DNA of bacteria	milk and lettuce	≈1.5 h	30 CFU/mL	11
Phage-based real- time PCR	Acinetobacter baumannii	DNA of phage	blood	4 h	10 ² CFU/mL	12
Phage-assisted bacteria lysis / Argonaute	Salmonella	DNA and ATP of bacteria	chicken	2 h	20 CFU/mL	13
reporter phage- induced bioluminescence	E. coli, Enterococcus spp., and Klebsiella spp	Metabolic activity of bacteria	Urine	5h	≥10 ³ CFU/mL	14
PMA combined with ddPCR	Vibrio parahaemolytic us	DNA of bacteria	aquatic products	2.5 h	7.32×10 ¹ CFU/mL	15
PMA combined with RAA	S. aureus	DNA of bacteria	milk sample	4 h	5.4×10 ² CFU/mL	16
PMA Combined with Flow Cytometry	Lactobacillus	DNA of bacteria	infant formula	2.5 h	2.7×10 ⁴ CFU/g	17
Phage amplification assay /SEA- CRISPR/Cas12a	P. aeruginosa	DNA of phage	Urine	3.5 h	10 ³ CFU/mL	This study

Table S4 Comparison of Viable Bacteria Detection Methods

Reference:

- S. Yang, Y. Guo, J. Fan, Y. Yang, C. Zuo, S. Bai, S. Sheng, J. Li and G. Xie, *Microchimica Acta*, 2020, 187, 1–10.
- S. Wang, Y. Fan, Z. Feng, M. Song, Q. Li, B. Jiang, F. Qin, H. Liu, L. Lan and M. Yang, *Food Control*, 2021, **130**, 108194.
- 3. U. Kim, S.-Y. Lee and S.-W. Oh, Analytica Chimica Acta, 2023, 1239, 340679.
- 4. C. Zhang, Z. Luo and X. Lin, Food Bioscience, 2024, 59, 104069.
- T. Meng, Y. Ren, Q. Wang, L. Lu, Y. Luo, J. Zhang, Q. Zhang, B. B. Dzantiev, M. Negahdary and Y. Wan, *Sensors and Actuators B: Chemical*, 2024, 400, 134946.
- A. Patnaik, S. K. Rai and R. K. Dhaked, *International Journal of Biological Macromolecules*, 2024, 263, 130216.
- L. Peng, J. Zhou, L. Yin, S. Man and L. Ma, *Analytica Chimica Acta*, 2020, 1125, 162–168.
- A. Garrido-Maestu, P. Fuciños, S. Azinheiro, C. Carvalho, J. Carvalho and M. Prado, *Food Control*, 2019, 99, 79–83.
- 9. C. Huang, R. Zheng, Y. Ding, S. R. Nugen and X. Wang, *Talanta*, 2023, 253, 124095.
- 10. A. Lamas, S. B. Santos, M. Prado and A. Garrido-Maestu, *Food Microbiology*, 2023, **115**, 104341.
- 11. C. Huang, B. Y. Mahboubat, Y. Ding, Q. Yang, J. Wang, M. Zhou and X. Wang, *Lwt*, 2021, **142**, 111075.
- 12. J. Luo, M. Jiang, J. Xiong, J. Li, X. Zhang, H. Wei and J. Yu, *Analytica Chimica Acta*, 2018, **1044**, 147–153.
- 13. X. Wang, X. Hu, S. Pan, Y. Zhang, J. Zhao, F. Jiang, Y. Li and Y. Chen, Sensors and Actuators B: Chemical, 2024, 408, 135543.
- S. Meile, J. Du, S. Staubli, S. Grossmann, H. Koliwer-Brandl, P. Piffaretti, L. Leitner, C. I. Matter, J. Baggenstos and L. Hunold, *Nature communications*, 2023, 14, 4336.
- 15. H. Zhou, X. Liu, Z. Lu, A. Hu, W. Ma, C. Shi, X. Bie, Y. Cheng, H. Wu and J. Yang, *Food Control*, 2023, **144**, 109353.
- 16. G. Xie, D. Zhou, G. Zhao, X. Feng, Z. P. Aguilar and H. Xu, *Lwt*, 2021, **135**, 110249.
- 17. C. Wang, S. Liu, Z. Wang, M. Wang, H. Pang, Y. Liu, H. Chang and Z. Sui, *Analytical Chemistry*, 2024, **96**, 1093–1101.