Supplementary Material

Dynamically crosslinked, self-adapting, injectable gelatin-chondroitin sulfate hydrogel with antibacterial and antioxidant properties for treatment of deep and irregular wounds

Aniruddha Dan^{1, #}, Devanshi Sharma^{2, #}, Hemant Singh^{1,3,4, #}, Sunny Singh², Zeel Bhatia², Sriram Seshadri^{2*}, Shabir Hassan^{3,4}, Mukesh Dhanka^{1*}

¹Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar-382055, Gujarat, India

²Institute of Science, Nirma University, S G Highway, Ahmedabad-382481, Gujarat, India ³Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi-127788, United Arab Emirates

⁴Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi-127788, United Arab Emirates

[#]These authors contributed equally.

*Corresponding author

Dr. Mukesh Dhanka

Email address: mukesh.d@iitgn.ac.in

Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India Pin code- 382055

Dr. Sriram Seshadri

Email ID: Sriram.seshadri@nirmauni.ac.in

Institute of Science, Nirma University, S G Highway, Ahmedabad-382481, Gujarat, India

Supplementary tables

Table-1 Release kinetics model equations

 M_t = amount of drug release at "t", and K_H , K, and K_0 are constants

Zero-order	$M_t = M_o + K_o t$
First-order	$\log C = \log C_o - \frac{kt}{2.303}$
Higuchi	$ft = Q = K_H \times t^{\frac{1}{2}}$
Hixson Crowell	$W_{o}^{1/3} - W_{t}^{1/3} = kt$
Korsmeyer-Peppas	$ln_{o}^{\text{ind}} \frac{M_{t}}{M_{o}} = n ln_{o}^{\text{ind}} t + ln_{o}^{\text{ind}} K$

Table-2 FTIR peaks of the optimized G-CS-TA and G-CS-TA/AgNPs hydrogels

Code	Band (cm ⁻¹)	Assignment
1	3291	stretching of N-H and Polyphenolic OH of TA
2	3066	C-H stretching in aromatic rings of TA
3	1747	oxidation of polyphenolic hydroxyls into carboxyl groups
4	1637	Amide I
5	1538	Amide II
6	1233	Amide III, stretching of S=O in CS, B-O in BO ₄ units derived
		from Sodium meta-borate

Table-3 Syringeability of fabricated hydrogel formulations

Sample	Syringeability(%)
G/CS/TA-1	98.8±0.5
G/CS/TA-2	98.1±0.31
G/CS/TA/AgNP-1	98.5±0.63
G/CS/TA/AgNP-2	99.01±0.28

Table 4 Drug release kinetics (R² value) of Tannic acid from different hydrogel formulations

Hydrogels Models	G/CS/TA-1	G/CS/TA/AgNP-1	G/CS/TA-2	G/CS/TA/AgNP-2
Zero-order	0.9718	0.9594	0.9764	0.9367
First Order	0.7247	0.6953	0.7050	0.5816
Higuchi	0.925	0.9553	0.943	0.9567
Hixson	0.9736	0.9776	0.9798	0.9644
Korsmeyer-peppas	0.8361	0.9084	0.90339	0.8878

Table 5 Drug release kinetics (R² value) of silver nanoparticles from G/CS/TA/AgNP-1, G/CS/TA/AgNP-2

Hydrogels	G/CS/TA/AgNP-1	G/CS/TA/AgNP-2
Models		
Zero-order	0.9117	0.9642
First Order	0.5618	0.6047
Higuchi	0.9632	0.9735
Hixson	0.9661	0.9887
Korsmeyer-peppas	0.9282	0.9384

Supplementary figures

Figure S1- (A) Hydrogel loaded in the injection with 24G needle. (B) injectability of the hydrogel. (C) Printability of the fabricated hydrogel via 24G needle.

Figure S2- Mechanism of self-healing ability of the hydrogel.

Figure S3- Release kinetics of Tannic acid from fabricated dynamically crosslinked injectable hydrogels. (A) Zero-order kinetics of Tannic Acid release from fabricated injectable hydrogels, (B) First-order kinetics of Tannic Acid release from fabricated injectable hydrogels, (C) Higuchi model of Tannic Acid release from fabricated injectable hydrogels, (D) Hixson model of Tannic Acid release from fabricated injectable hydrogels, (E) Kors-peppas model of Tannic Acid release from fabricated injectable hydrogels.

Figure S4- Release kinetics of silver nanoparticles from fabricated dynamically crosslinked injectable hydrogels. (A) Zero-order kinetics of silver nanoparticles release from fabricated injectable hydrogels, (B) First-order kinetics of silver nanoparticles release from fabricated injectable hydrogels, (C) Higuchi model of silver nanoparticles release from fabricated injectable hydrogels, (D) Hixson model of silver nanoparticles release from fabricated injectable hydrogels, (E) Kors-peppas model of silver nanoparticles release release from fabricated injectable hydrogels, (E) Kors-peppas model of silver nanoparticles release from fabricated injectable hydrogels, (E) Kors-peppas model of silver nanoparticles release from fabricated injectable hydrogels, (E) Kors-peppas model of silver nanoparticles release from fabricated injectable hydrogels, (E) Kors-peppas model of silver nanoparticles release from fabricated injectable hydrogels, (E) Kors-peppas model of silver nanoparticles release from fabricated injectable hydrogels.

Figure S5- Epidermal thickness of the H&E stained tissue samples from each treatment group.