Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2025

Supporting information

CNCs-mediated functionalized MWCNTs reinforced double-network conductive hydrogels

as smart flexible strain and epidermic sensors for human motion monitoring

Hamna Hassan¹, Mansoor Khan¹, Luqman Ali Shah^{1*}, Hyeong-Min Yoo²

¹Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of

Peshawar, 25120, Pakistan

²School of Mechanical Engineering, Korea University of Technology and Education

(KOREATECH), Cheonan 31253, Republic of Korea

Figure S1. FTIR analysis of prepared hydrogels.

Figure S2. SEM images at different magnification power (a) A, (b) AC, and (c) ACC4 hydrogel systems.

Figure S3. Conductivity vs sample composition of prepared hydrogels.

Figure S4. LED response at different stretching modes of the hydrogel.

Table ST1:	Comparison	between prese	nt work and	previously r	reported literature
	1	1		1 2	1

hydrogels	Conductivit	Gaug	Strai	response/recove	Reference
	У	e	n	ry time (ms)	S
		factor	(%)		
		(GF)			

PAM@CNC/TA-ag NC	5.6 mS/cm	1.2	100	334/175	[1]
hydrogels					
P(AM/DA)Al ³⁺ hydrogels		3.4	500	-	[2]
P(LM/Amm)/SA hydrogels	8 mS/cm	0.6	200	200	[3]
AMP-regulated hydrogels	-	2.57	100	-	[4]
PVA-PVP hybrid hydrogels	-	0.48	200	-	[5]
GN-CNF@PVA hydrogels	3.55 S/m	3.8	500	-	[6]
PVA/CMC/TA/MXene	-	2.9	700	-	[7]
hydrogel					
P(CNFs/Agar/Amm) hydrogels	-	1.78	1000	-	[8]
P(QACNF/MXene) hydrogels	1281 mS/m	2.24	1465	141/140	[9]
PAA-	1.89 mS/m	0.68	160	280/100	[10]
PVA/PAM/Zn ²⁺ Organohydrog					
els					
NCROs	-	1.75	150	721/723	[11]
PAA-PVA/PANI	-	1.81	70	280	[12]
organohydrogels					
(P(AM-co-AA)) hydrogel	-	0.38	225	63	[13]
(PAM)/(k-CG)/Double	2.26 S/m	2.4	-	-	[14]
network hydrogel					
(P(Amm-co-BA/CNCs))	-	7.4	750	140	[15]
hydrogel					
CNCs@PDA-AuNPs hydrogel	420 mS/m	0.99	-	160	[16]
system					
(p(Amm-co-LM/A-	-	9.2	500	<130	[17]
MWCNTs)) hydrogel system					
CNCs-mediated A-MWCNTs-	0.09 S/m	4.32	400	100/100	current
based DN hydrogels					work

References

1. Hao, S., et al., *Tannic acid–silver dual catalysis induced rapid polymerization of conductive hydrogel sensors with excellent stretchability, self-adhesion, and strain-sensitivity properties.* ACS applied materials & interfaces, 2020. **12**(50): p. 56509-56521.

- Zhang, G., et al., *Topologically enhanced dual-network hydrogels with rapid recovery for low-hysteresis, self-adhesive epidemic electronics*. ACS Applied Materials & Interfaces, 2021. 13(10): p. 12531-12540.
- 3. Yazdani, S., et al., *Ionic conductive hydrogels formed through hydrophobic association for flexible strain sensing.* Sensors and Actuators A: Physical, 2023. **350**: p. 114148.
- 4. Zhang, Q., et al., *Nucleotide-regulated tough and rapidly self-recoverable hydrogels for highly sensitive and durable pressure and strain sensors.* Chemistry of Materials, 2019. **31**(15): p. 5881-5889.
- Liu, Y.-J., et al., Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic "soft and hard" hybrid networks. ACS applied materials & interfaces, 2017. 9(30): p. 25559-25570.
- 6. Zheng, C., et al., *Highly stretchable and self-healing strain sensors based on nanocellulosesupported graphene dispersed in electro-conductive hydrogels.* Nanomaterials, 2019. **9**(7): p. 937.
- 7. Kong, D., et al., *Highly sensitive strain sensors with wide operation range from strong MXenecomposited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel.* Advanced Composites and Hybrid Materials, 2022. **5**(3): p. 1976-1987.
- 8. Pan, K., et al., *Highly sensitive, stretchable and durable strain sensors based on conductive double-network polymer hydrogels.* Journal of Polymer Science, 2020. **58**(21): p. 3069-3081.
- 9. Ni, Q.-Y., et al., *Mechanical tough and stretchable quaternized cellulose nanofibrils/MXene conductive hydrogel for flexible strain sensor with multi-scale monitoring.* Journal of Materials Science & Technology, 2024. **191**: p. 181-191.
- Zheng, B., et al., Fishing Net-Inspired Mutiscale Ionic Organohydrogels with Outstanding Mechanical Robustness for Flexible Electronic Devices. Advanced Functional Materials, 2023.
 33(28): p. 2213501.

- 11. Wen, J., et al., *Nanofiber composite reinforced organohydrogels for multifunctional and wearable electronics.* Nano-Micro Letters, 2023. **15**(1): p. 174.
- 12. Wang, K., et al., *Mechanically robust, stretchable and environmentally adaptable organohydrogels with cross-linked fibrous structure for sensory artificial skins.* Composites Part A: Applied Science and Manufacturing, 2024. **184**: p. 108274.
- Wu, P., et al., Double layered asymmetrical hydrogels enhanced by thermosensitive microgels for high-performance mechanosensors and actuators. Journal of Colloid and Interface Science, 2024.
 662: p. 976-985.
- 14. Zheng, H., et al., *Stable Flexible Electronic Devices under Harsh Conditions Enabled by Double-Network Hydrogels Containing Binary Cations.* ACS Applied Materials & Interfaces, 2024. **16**(6): p. 7768-7779.
- 15. Ullah, R., L.A. Shah, and M.T.J.I.J.o.B.M. Khan, *Cellulose nanocrystals boosted hydrophobically associated self-healable conductive hydrogels for the application of strain sensors and electronic devices.* 2024. **260**: p. 129376.
- 16. Li, P., et al., *Nanocomposite hydrogels flexible sensors with functional cellulose nanocrystals for monitoring human motion and lactate in sweat.* 2023. **466**: p. 143306.
- 17. Khan, M., et al., *Hydrophobically associated functionalized CNT-reinforced double-network hydrogels as advanced flexible strain sensors.* 2022. **4**(10): p. 7397-7407.