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Figure S1. FTIR analysis of prepared hydrogels.
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Figure S2. SEM images at different magnification power (a) A, (b) AC, and (c) ACC4 hydrogel 
systems.
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Figure S3. Conductivity vs sample composition of prepared hydrogels.

Figure S4. LED response at different stretching modes of the hydrogel.

Table ST1: Comparison between present work and previously reported literature
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PAM@CNC/TA-ag NC 
hydrogels

5.6 mS/cm 1.2 100 334/175 [1]

P(AM/DA)Al3+ hydrogels 3.4 500 - [2]
P(LM/Amm)/SA hydrogels 8 mS/cm 0.6 200 200 [3]
AMP-regulated hydrogels - 2.57 100 - [4]
PVA-PVP hybrid hydrogels - 0.48 200 - [5]
GN-CNF@PVA hydrogels 3.55 S/m 3.8 500 - [6]
PVA/CMC/TA/MXene 
hydrogel

- 2.9 700 - [7]

P(CNFs/Agar/Amm) hydrogels - 1.78 1000 - [8]
P(QACNF/MXene) hydrogels 1281 mS/m 2.24 1465 141/140 [9]
PAA-
PVA/PAM/Zn2+ Organohydrog
els

1.89 mS/m 0.68 160 280/100 [10]

NCROs - 1.75 150 721/723 [11]
PAA-PVA/PANI 
organohydrogels

- 1.81 70 280 [12]

 (P(AM-co-AA)) hydrogel - 0.38 225 63 [13]
(PAM)/(k-CG)/Double 
network hydrogel

2.26 S/m 2.4 - - [14]

(P(Amm-co-BA/CNCs)) 
hydrogel

- 7.4 750 140 [15]

CNCs@PDA-AuNPs hydrogel 
system

420 mS/m 0.99 - 160 [16]

(p(Amm-co-LM/A-
MWCNTs)) hydrogel system

- 9.2 500 <130 [17]

CNCs-mediated A-MWCNTs-
based DN hydrogels

0.09 S/m 4.32 400 100/100 current 
work
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