Supplementary Information

Flavin-based Probe for Real-Time Monitoring of Hypochlorous Acid Dynamics in Live Cells

Harsha Gopal Agrawal,^a Pravin Shankar Giri,^b Tanima Sahoo,^a Subha Narayan Rath,^{*b} and Ashutosh Kumar Mishra^{*a}

^aDepartment of Chemistry, Indian Institute of Technology, Hyderabad, Kandi-502284, Telangana, India ^bDepartment of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi-502284, Telangana India.

Table of contents

1.	Photophysical Studies	.S2
2.	Table for the comparison of TVF with published probes for HOCl sensing	S7
3.	List of NMR	S10
4.	List of Mass Spectra	S14

1. Photophysical studies

Figure S1: UV-visible spectra of Propyl flavin (PFl), TPA, and **TPA-vinylene-Flavin** (**TVF**) at 19 μM concentration in methanol.

λ_{abs}^{a} a	λ_{em}^{a}	Stokes shift ^b	ε ^c	${\pmb \Phi}_{f}{}^{d}$	τ^{e}
506	656	4519	6990	0.09	0.96
493	636	4561	7440	0.014	1.00
525	-	-	7490	-	-
509	-	-	8100	-	-
499	-	-	6560	-	-
531	-	-	4550	-	-
	λ _{abs} ^a 506 493 525 509 499 531	λ_{abs}^{a} λ_{em}^{a} 506 656 493 636 525 - 509 - 499 - 531 -	λ _{abs} ^a λ _{em} ^a Stokes shift ^b 506 656 4519 493 636 4561 525 - - 509 - - 499 - - 531 - -	λ_{abs}^{a} λ_{em}^{a} Stokes shiftb ϵ^{c} 50665645196990493636456174405257490509-8100499-6560531-4550	λ_{abs}^{a} λ_{em}^{a} Stokes shiftb ϵ^{c} Φ_{f}^{d} 506656451969900.09493636456174400.0145257490-509-8100-499-6560-531-4550-

Table S1. Summary of photophysical properties of TVF in different polarities of solvent.

^anm ^bcm⁻¹ ^cMolar extinction coefficient (M⁻¹cm⁻¹) ^dQuantum yield (reference standard: Ru(bpy)³⁺ in Acetonitrile λ_{exc} = 450 nm and Φ = 0.094) ^eAverage lifetime (ns).

Figure S2: Calibration curve for measurement of the extinction coefficient of **TVF** in toluene, dioxane, DCM, Methanol, DMSO, and Water at each solvent absorption maxima.

Figure S3: Fluorescence lifetime spectra of **TVF** (Bi-exponential decay) in (a) Toluene and (b) Dioxane under air.

Table S2: Fluorescence lifetime measurement parameter of TVF.

Solvent	T1 (ns)	T2 (ns)	B1	B2	Chi.sq.
Toluene	0.32	2.6	0.17	0.009	1.07
Dioxane	0.04	2.6	2.16	0.02	1.12

Figure S4: Fluorescence spectra of TVF (62 μ M) with the addition of different concentrations of HOCl (0–6 eq) in methanol. $\lambda_{ex} = 511$ nm.

Figure S5: (a) UV-Visible and (b),(c) Fluorescence spectra of TPA-Flavin (62 μ M) and TPA-Flavin incubated with 10 equivalents of HOCl in methanol. Fluorescence spectra were recorded with excitation at (b) 435 nm and (c) 491 nm.

Figure S6: Mass spectrum peaks of the product of TVF and ClO⁻. (a) and (b) is the different zoomed region of the mass spectrum

Figure S7: (a) UV-visible and (b) Fluorescence spectra of TVF recorded in different viscosities solvents such as MeOH, PEG400, and addition of HOCl (10 eq) in PEG400.

2. Table for the comparison of TVF with published probes for HOCl sensing

Probe	Emission wavelengt h	Target Localization	Response type	LOD (nM)	Reference s
	520 nm	Non-specific	Ratiometri c	500	1
	774 nm	Non-specific	ON-OFF	700	2
	515 nm	Non-specific	Ratiometri c	53	3
	435 nM	Mitochondri a	Ratiometri C	27	4
	511 nm	Lysosomes	Ratiometri c	10.6	5
	455 nm	Mitochondri a	Ratiometri c	182	6

Table S3: The comparison of TVF with published probes for HOCl sensing.

	530 nm	Non-specific	OFF-ON	68	7
о о о он , , , , , , , , , , , , , , , , , , ,	435 nm and 525 nm	Mitochondri a	OFF-ON	12	8
Et ₂ N C C N	490 nm	Non-specific	OFF-ON	190	9
	520 nm	Non-specific	OFF-ON	8.3	10
	535 nm	Non-specific	Ratiometri c	738	11
	507 nm	Mitochondri a	OFF-ON	360	This work

REFERENCES

1 J. Park, H. Kim, Y. Choi and Y. Kim, *Analyst*, 2013, **138**, 3368–3371.

2 M. Sun, H. Yu, H. Zhu, F. Ma, S. Zhang, D. Huang and S. Wang, *Anal Chem*, 2014, **86**, 671–677.

3 J. Li, P. Li, F. Huo, C. Yin, T. Liu, J. Chao and Y. Zhang, *Dyes and Pigments*, 2016, **130**, 209–215.

4 L. Zhou, D.-Q. Lu, Q. Wang, S. Hu, H. Wang, H. Sun and X. Zhang, *Spectrochim Acta A Mol Biomol Spectrosc*, 2016, **166**, 129–134.

5 Z. Zhang, J. Fan, G. Cheng, S. Ghazali, J. Du and X. Peng, *Sens Actuators B Chem*, 2017, **246**, 293–299.

6 Q. Hu, C. Qin, L. Huang, H. Wang, Q. Liu and L. Zeng, *Dyes and Pigments*, 2018, **149**, 253–260.

J. Lv, Y. Chen, F. Wang, T. Wei, Z. Zhang, J. Qiang and X. Chen, *Dyes and Pigments*, 2018, **148**, 353–358.

8 X. Zhong, Q. Yang, Y. Chen, Y. Jiang, B. Wang and J. Shen, *J Mater Chem B*, 2019, 7, 7332–7337.

9 M. Li, J. Chao, Y. Liu, M. Xu, Y. Zhang, F. Huo, J. Wang and C. Yin, *Spectrochim Acta A Mol Biomol Spectrosc*, 2020, **229**, 118001.

10 P. Luo and X. Zhao, *ACS Omega*, 2021, **6**, 12287–12292.

11 Z. Zhang, L. Ma, Y. Huang, Y. Zhou, H. Zhang, J. Yan and C. Liu, *Analytical Methods*, 2023, **15**, 3420–3425.

3. List of NMR

Figure S8. ¹H NMR (400 MHz, CDCl₃) of compound 3.

Figure S9. ¹³C NMR (100 MHz, CDCl₃) of compound 3.

Figure S10. ¹H NMR (400 MHz, DMSO-*d*₆) of compound TVF.

Figure S11. ¹³C NMR (75 MHz, DMSO- d_6) of compound TVF.

4. List of HRMS

Figure S12. HRMS spectra of compound 3.

Figure S13. HRMS spectra of compound TVF.