Supporting Information

Self-adaptive adhesive, mechanically enhanced, and antibacterial nonwoven fabric wound dressing functionalized by semi-interpenetrating

network hydrogel for promoting infected wound healing

Linna Zhang^a, Guofei Yu^a, Rui Dai^a, Shuang Wang^{a*}, Min Yang^{b,c}, Haibo Wang^{a*}

^a College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China

^b West China Hospital of Department of Pediatric Surgery, Sichuan University, Chengdu

610041, China

^c Research Institutes of Leather and Footwear Industry of Wenzhou, Wenzhou 325000, China.

Figure S1. High-resolution Zn 2p XPS spectra of PNGZn@NF.

Figure S2. The cumulative release curve of Zn^{2+} from PNGZn@NF.

An Inductively Coupled Plasma (ICP, 5100 SVDV, Agilent, USA) was used to measure the sustained-release curve of Zn^{2+} from PNGZn@NF. DIW immersing PNGZn@NF was removed at presupposed time points, and fresh DIW was added at the same time to maintain a continuous release of the release system. Finally, the released amount of Zn^{2+} was calculated according to the characteristic peak at 213.857

nm.