Supplementary Material

Alkali metal doped two dimensional Janus Cr$_2$Br$_3$I$_3$ monolayers with quantum anomalous Hall effect

Xiang Yina, Li Denga, Yanzhao Wua, Junwei Tongb, Feifei Luoa, Fubo Tianc, and Xianmin Zhanga*

aKey Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang, 110819, China

bDepartment of Physics, Freie Universität Berlin, Berlin, 14195, Germany

cState Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China

*E-mail: zhangxm@atm.neu.edu.cn

Fig. S1 The phonon dispersion spectra of the (a) Li- and (c) K doped ML Cr$_2$Br$_3$I$_3$. Total energy fluctuation at AIMD simulations of the (b) Li- and (d) K doped ML Cr$_2$Br$_3$I$_3$. The insets in (b) and (d) shows snapshots of the Li- and K doped ML Cr$_2$Br$_3$I$_3$ at 6 ps.
The strain dependence of the distance (d) between two Cr atoms is drawn in Fig. S2(a). The d significantly enlarges when ε is from -1% to 0%. As shown in Fig. S2(b), both the angles of α₁ and α₂ also suddenly increase from -1% to 0%. The results clearly prove the enhancement of FM superexchange interaction. Therefore, the change of d, α₁, and α₂ under various strains likely induces a sharp change of energy difference at ε = 0 through affecting the magnetic interactions in Figs. 2(a) through 2(c).
Fig. S3 Band structures of pristine ML Cr$_2$Br$_3$I$_3$. (a) without SOC. (b) with SOC. Density of states (DOS) and Projected density of states (PDOS) of pristine ML Cr$_2$Br$_3$I$_3$.
Fig. S4 DOS of (a) Li doped, (c) Na doped, and (e) K doped ML Cr$_2$Br$_3$I$_3$. PDOS of (b) Li doped, (d) Na doped, and (f) K doped ML Cr$_2$Br$_3$I$_3$.
Fig. S5 Band structures of Li doped ML Cr_{2}Br_{3}I_{3} with SOC at different U values. (a) U = 0 eV. (b) U = 1 eV. (c) U = 2 eV.