## Promoting photoreduction selectivity via synergetic utilization between vacancy

## and nanofiber structure over flexible $Zr/TiO_{2-x}$ nanofiber films

Shan Jiang<sup>+</sup>, Haoze Li<sup>+</sup>, Wenke Gui, Yingbing Zhang, Chenchen Zhang, Lei Zhang,

Jianping Yang and Li Wang\*



**Figure S1.** XRD patterns of the Zr/TiO<sub>2-x</sub> NFs.

| Element | Atomic Fraction<br>(%) |
|---------|------------------------|
| Ti      | 35.66                  |
| 0       | 54.69                  |
| Zr      | 9.65                   |

Figure S2. TEM mapping of H400-Zr/TiO<sub>2-x</sub> NFs.



**Figure S3.** a) The full XPS spectra of Zr/TiO<sub>2</sub> NFs and H400-Zr/TiO<sub>2-x</sub> NFs. b) Ti 2p and Zr 2p XPS spectra of Zr/TiO<sub>2</sub> NFs and H400-Zr/TiO<sub>2-x</sub> NFs.



Figure S4. a, b, c) N<sub>2</sub> adsorption-desorption isotherms that corresponded to SSA, pore diameters,

surface area, pore size and pore volume of Zr-TiO<sub>2-x</sub> NFs.



Figure S5. a) The band gap of Zr/TiO<sub>2</sub> NFs and H400-Zr/TiO<sub>2-x</sub> NFs. b) UV-visible diffuse



reflectance spectra of Zr/TiO<sub>2-x</sub> NFs.

Figure S6. a) PL spectra and b) EIS spectra of Zr/TiO<sub>2</sub> NFs and H400-Zr/TiO<sub>2-x</sub> NFs.



**Figure S7.** a) photocurrent curves of  $Zr/TiO_2$  NFs and H400- $Zr/TiO_{2-x}$  NFs. b) Acquiring the rise time of  $Zr/TiO_2$  NFs by fitting the on curve. c) Acquiring the rise time of H400- $Zr/TiO_{2-x}$  NFs by fitting the on curve.



Figure S8. a, b) Comparison of the water wettability of Zr/TiO<sub>2</sub> and H400-Zr/TiO<sub>2-x</sub>NFs.



**Figure S9.** a) Yield rate of photocatalytic CO<sub>2</sub> reduction over various  $Zr/TiO_{2-x}$  NFs materials. d) Yield rate of H400-Zr/TiO<sub>2-x</sub> and H400-Zr/TiO<sub>2-x</sub> post-treated with different content of O<sub>2</sub> to remove OVs.



Figure S10. Peak change of O<sub>2</sub> in gas chromatography during photocatalysis of H400-Zr/TiO<sub>2-x</sub> NFs.



Figure S11. Comparison of photocatalytic  $CH_4$  selectivity with other catalysts towards  $CO_2$  reduction reported in the literature. <sup>[1-13]</sup>



Figure S12. a) SEM images of crushed H400-Zr/TiO $_{2-x}$  NFs. b) XRD patterns of



crushed H400-Zr/TiO<sub>2-x</sub> NFs.

Figure S13. The gas evolution under different situations of H400-Zr/TiO<sub>2-x</sub> NFs.



Figure S14. Cycling selective stability of CO<sub>2</sub> over H400-Zr/TiO<sub>2-x</sub> NFs.



Figure S15. a) XRD patterns of H400-Zr/TiO<sub>2-x</sub> NFs before and after photocatalytic reduction





Figure S16. Comparison before and after reaction XRD patterns and SEM images

of Zr/TiO<sub>2-x</sub> NFs.



Figure S17. a, b) Folding and opening processes of H400-Zr/TiO<sub>2-x</sub> NFs. c) The comparison on the

yield rates of CO and  $CH_4$  over H400-Zr/TiO<sub>2-x</sub> NFs before and after floding.



Figure S18. Structural models of Gibbs free energy calculations for the H400-Zr/TiO<sub>2-x</sub> NFs.



Figure S19. XPS VB spectra of Zr/TiO<sub>2</sub> and H400-Zr/TiO<sub>2-x</sub> NFs.

Table S1. Free energy (eV) and total energy (eV) of CO<sub>2</sub> photoreduction for the H400-Zr/TiO<sub>2-x</sub>

NFs.

|                  |                     |           | *CO <sub>2</sub> | соон*     | CO*       | СН        | D* CH     | I <sub>2</sub> O* | CH₃O*       | *OH       | H <sub>2</sub> O* |           |
|------------------|---------------------|-----------|------------------|-----------|-----------|-----------|-----------|-------------------|-------------|-----------|-------------------|-----------|
|                  | E-1                 | S /eV     | -1036.60         | -1050.16  | -595.8    | 8 -610    | .26 -63   | 28.15             | -642.10     | -430.63   | -471.64           |           |
| H400-Zr/         | /TiO <sub>2-x</sub> | CO2       | *CO <sub>2</sub> | соон*     | CO*       | со        | сно*      | CH₂O*             | CH₃O*       | 0*        | *OH               | H₂O*      |
| E-TS /           | /eV                 | -38886.10 | -39923.01        | -39929.84 | -39482.02 | -38885.12 | -39496.68 | -39508.93         | 1 -39528.81 | -38886.46 | -39318.29         | -39358.56 |
| G/e <sup>v</sup> | V                   | 0         | -0.3091          | 6.4202    | -0.0445   | 0.9657    | -0.3208   | 5.3346            | -0.6181     | -0.3599   | -1.5621           | -0.8270   |

## References

 [1] Y. Li, A. G. Walsh, D. Li, D. Do, H. Ma, C. Wang, P. Zhang, X. Zhang, *Nanoscale* 2020, **12**, 17245-17252.

[2] H. Peng, R. Guo, H. Lin, J. Rare Earth 2020, 38, 1297-1304.

[3] C. Huang, R. Guo, W. Pan, J. Tang, W. Zhou, H. Qin, X. Liu, P. Jia, J. CO<sub>2</sub> Util. 2018, **26**, 487-495.

[4] M. Liu, L. Zheng, X. Bao, Z. Wang, P. Wang, Y. Liu, H. Cheng, Y. Dai, B. Huang, Z. Zheng, *Chem. Engin. J.* 2021, **405**, 126654.

[5] L. Chen, K. Huang, Q. Xie, S. M. Lam, J. C. Sin, T. Su, H. Ji, Z. Qin, *Catal. Sci. Technol.* 2021, **11**, 1602-1614.

[6] F. Xu, J. Zhang, B. Zhu, J. Yu, J. Xu, Appl. Catal. B: Environ. 2018, 230, 194-202.

[7] G. Ren, Z. Wei, Z. Li, X. Zhang, X. Meng, *Mater. Today Chem.* 2023, 27,101260.

[8] H. Zhao, X. Zheng, X. Feng, Y. Li, J. Phys. Chem. C 2018, 122, 18949-18956.

[9] H. Feng, C. Zhang, M. Luo, Y. Hu, Z. Dong, S. Xue, P. K. Chu, *Nanoscale* 2022, **14**, 16303-16313.

- [10] Z. Jiang, W. Sun, W. Miao, Z. Yuan, G. Yang, F. Kong, T. Yan, J. Chen, B. Huang, C. An, G. A.
- Ozin, Adv. Sci. 2019, 6, 1900289.
- [11] R. Sun, X. Jiang, M. Zhang, Y. Ma, X. Jiang, Z. Liu, Y. Wang, J. Yang, M. Xie, W. Han, J. Catal.2019, **378**, 192-200.

[12] Z. Zhang, J. Tan, L. Cheng, W. Yang, *Ceram. Int.* 2021, **47**, 34106-34114.

[13] X. Lin, S. Xia, L. Zhang, Y. Zhang, S. Sun, Y. Chen, S. Chen, B. Ding, J. Yu, J. Yan, *Adv. Mater*.
2022, **34**, 2200756.