Supporting Information

Solvent Engineering of Self-Separating Fullerene Crystals for

Photodetectors

Qin Tang,^a Lingyue Wang,^a Yang Liu,^b Yuye Zhang,^a Deyang Ji^{*b} and Hongbo Li^{*a}

^a-School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051,

Chin.

^{b.}Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072 China.

Fig. S1 Additional TEM image of $C_{60}NCs_U$.

Fig. S2 Additional SEM image of C₆₀NCs_B.

Fig. S3 TG curves of $C_{60}NCs_U$ and $C_{60}NCs_B$ recorded under a nitrogen atmosphere.

Fig. S4 Digital photos of the Self-separating process at different concentration of C_{60} in *m*-Xylene.

 Table S1. Digital photos and SEM images of the formation process with different poor solvents.

Sample	Digital photo	SEM image
H ₂ O		No crystals
DMF		3/202023 M peaker nag V0 dd
IPA		88 2/20203 MM present mag 100 10 10 88 12/32:001 MM present mag 10 MonMMercEM
H ₂ O+DMF		No crystals

Fig. S5 SEM image of $C_{60}NCs_U$ and $C_{60}NCs_B$ before self-separation process.

Fullerene nanocrystals on water surface

Fig. S6 Scheme illustration of the fullerene nanocrystals transfer on the forked finger electrode from water surface.

Table S2. Statistics of average diameter and average length of $C_{60}NCs_U$ and $C_{60}NCs_B$ before self-separation process.

Sample	Diameter (nm)	Length (µm)
C ₆₀ NCs_U	205	7.3
C ₆₀ NCs_B	824	9.5

Table S3. Device currents of $C_{60}NCs_U$ with and without UV illumination at a light density a light density of 0.076, 0.33 and 0.66 mW/cm² and at bias of 20, 40 and 60 V respectively.

Light intensity				
	Dark	0.076 mW cm ⁻²	0.33 mW cm ⁻²	0.66 mW cm ⁻²
Voltage				
20	23.6 pA	182 pA	216 pA pA	317 pA
40	27.7 pA	264 pA	405 pA	553 pA
60	65.3 pA	330 pA	627 pA	841 pA

Table S4. Device currents of $C_{60}NCs_B$ with and without UV illumination at a light density a light density of 0.076, 0.33 and 0.66 mW/cm² and at bias of 20, 40 and 60 V respectively.

Light intensity				
	Dark	0.076 mW cm ⁻²	0.33 mW cm ⁻²	0.66 mW cm ⁻²
Voltage				
20	58.5 pA	218 pA	262 pA	460 pA
40	101 pA	374 pA	631 pA	951 pA
60	124 pA	517 pA	1190 pA	1890 pA

Table S5. Summary of the main C_{60} nanostructures fo	r photodetectors tha	t have become	common in
recent years.			

Material	Photocurrent	On/off ratio	Ref.
Super-Long fullerene 1D nanostructures	around 80 pA	High	1
Fullerene Microflowers	20 pA	3.2	2
Fullerene Microribbons	103 pA	High	3
Fullerene Single Crystal Microwires (DC-device)	around 150 pA	5.6	4
This work	Over 1000pA	17.08	

Fig. S7 Under UV irradiation, light-dependence of $C_{60}NCs_U$ and $C_{60}NCs_B$ at 60 V bias.

- 1. K. Liu, S. Gao, Z. Zheng, X. Deng, S. Mukherjee, S. Wang, H. Xu, J. Wang, J. Liu and T. Zhai, *Adv. Mater.*, 2019, **31**, 1808254.
- 2. Q. Tang, G. Zhang, B. Jiang, D. Ji, H. Kong, K. Riehemann, Q. Ji and H. Fuchs, *SmartMat*, 2021, **2**, 109-118.
- 3. L. Wei, J. Yao and H. Fu, *ACS nano*, 2013, **7**, 7573-7582.
- 4. X. Zhao, T. Liu, Y. Cui, X. Hou, Z. Liu, X. Dai, J. Kong, W. Shi and T. J. S. Dennis, *Nanoscale*, 2018, **10**, 8170-8179.