Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Synthesis and optical wireless communication application of high

efficiency extreme blue CsPbBr₃ nanoplates

Zhanpeng Wang,^{#abc} Luyang Hou,^{#abc} Jingzhou Li,^{*bc} Jiahao Zhang,^{abc} Hongyu Yang,^{bc} Yichi Zhong,^d Hongxing Dong, ^{*abc} Long Zhang^{ab}

^aShanghai Institute of Optics and Fine Mechanic, Chinese Academy of Sciences, Shanghai 201800, China. hongxingd@siom.ac.cn

^bHangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou 310024, China. lijingzhou@ucas.ac.cn

^cUniversity of Chinese Academy of Sciences, Beijing 100049, China

^dDepartment of Physics, College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China.

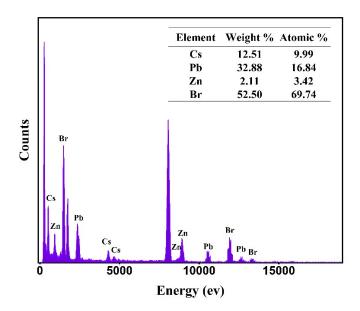
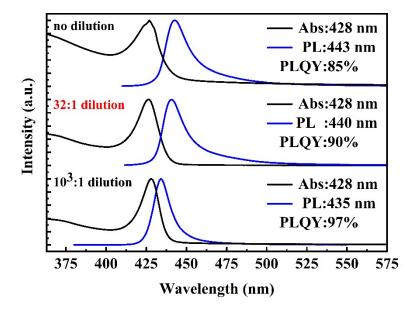



Fig. S1 The atomic percent of CsPbBr₃ NPls quantified semiquantitatively from EDS.

Fig. S2 Spectrum features (absorbance and PL) and PLQY contrast of CsPbBr₃ NPls solution with different dilution degree.

According to the results, the absorption peak remained unchanged and was located near 428nm with increasing dilution degree, meaning good stability and optical properties consistency of CsPbBr₃ nanoplatelets. The photoluminescence peak redshifts from 443 nm (no dilution), 440 nm (32 times dilution) to 435 nm (1000 times dilution) with increasing dilution degree. Meanwhile, the PLQY increases with increasing dilution degree. Reabsorption phenomenon is responsible for both the change of PL and PLQY. In short, the CsPbBr₃ nanoplatelets material still maintains high stability and good optical properties according to our additional experimental results.