Electronic Supplementary Information

Alkali metal salt-assisted crystal structure switch of hybrid indium

halides with near-unity photoluminescence quantum yield

Shuai Zhang, Canxu Chen, Yuanjie Chen, Bingsuo Zou*, and Ruosheng Zeng*

State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Physical Science and Technology, Guangxi University, Nanning 530004, China.

*Corresponding authors: zoubs@gxu.edu.cn; zengrsh@guet.edu.cn

Experimental section

Materials

Methylamine hydrochloride (CH₆ClN, 98%), potassium chloride (KCl, 99.8%), and indium chloride (InCl₃, 98%) were purchased Macklin. Antimony chloride (SbCl₃, 99%) was purchased from Aladdin. Hydrochloric acid (HCl, 37 wt% in water) was purchased from Sinopharm Chemical Reagent Co., Ltd. Ethanol anhydrous (CH₃CH₂OH, 99.9%) was purchased Nanning Blue Sky Experimental Equipment Co., Ltd. All of these chemical agents are used as received without further purification.

Synthesis

Fabrication of LED device

The LED device was created by integrating a NUV-LED chip (365 nm). First, the epoxy resin was mixed with 10%Sb:MA₄InCl₇ powder, mixed phase and 10%Sb:MA₂KInCl₆ powder separately. Next, the two mixtures were applied onto the LED chip's surface. Finally, the LED chip covered with the mixtures was dried in a drying oven at 70 °C for 72 hours to produce the devices.

Synthesis of Sb:MA₄InCl₇

Sb:MA₄InCl₇ was synthesized via a slow evaporation crystallization method. In a 25 mL glass bottle, 4 mmol MA, 1-x mmol InCl₃, and x mmol SbCl₃ (x = 0.005, 0.01, 0.03, 0.05, 0.1, 0.15, and 0.3) were dissolved in 4 mL of HCl. The solution was stirred magnetically at 60°C until it became

saturated, followed by filtration. The clear solution obtained after filtration was rapidly heated to 120°C and then cooled down to 60°C at a rate of 3°C/h. Slow evaporation at 60°C resulted in the formation of single crystals of Sb:MA₄InCl₇. The crystals were washed three times with ethanol and dried in an oven at 60°C for 6 hours.

Synthesis of Sb:MA₂KInCl₆

Sb:MA₂KInCl₆ was synthesized using the same slow evaporation crystallization method. In a 25 mL glass bottle, 2 mmol MA, 1.6 mmol KCl, 1-x mmol InCl₃, and x mmol SbCl₃ (x = 0.005, 0.01, 0.03, 0.05, 0.1, 0.15, and 0.3) were dissolved in 3 mL of HCl. The solution was stirred magnetically at 60°C until it became saturated, followed by filtration. The clear solution obtained after filtration was rapidly heated to 120°C and then cooled down to 60°C at a rate of 3°C/h. Slow evaporation at 60°C resulted in the formation of single crystals of Sb:MA₂KInCl₆. The crystals were washed three times with ethanol and dried in an oven at 60°C for 6 hours.

Transformation from Sb:MA₄InCl₇ to Sb:MA₂KInCl₆

Sb:MA₄InCl₇ and Sb:MA₂KInCl₆ can be synthesized using a mechanochemical grinding method too. 4 mmol MA, 0.9 mmol InCl₃, and 0.1 mmol SbCl₃ were placed in an agate mortar, and grinding with a pestle for 5 minutes yielded yellow-light-emitting 10% Sb:MA₄InCl₇. Then, adding 2 mmol KCl and continuous grinding resulted in a mixture emitting white light. Finally, adding 1 mmol InCl₃ and continuous grinding led to the formation of cyan-light-emitting 10% Sb:MA₂KInCl₆.

Characterization

X-ray powder diffraction (XRD, Bruker D8 Discover) was employed to characterize the phase and crystal structure. X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific ESCALAB250Xi) was utilized for identifying the elemental composition and chemical state. The Horiba Jobin Yvon Fluorolog-3 spectrometer was used to measure steady-state photoluminescence spectra, photoluminescence efficiency, and temperature-dependent PL spectra. Time-resolved spectra were collected using the Edinburgh FLS 1000 fluorescence spectrometer. Absorption spectra were measured with the UV-VIS-NIR spectrophotometer (PerkinElmer Instruments,

Lambda750). Thermogravimetric analysis (TGA) was performed on the SHIMADZU DTG-60H by increasing the temperature from RT to 900 °C at a heating rate of 10 °C/min in a nitrogen environment. Device performance characterization was conducted using a white light LED detection system.

DFT calculations

DFT calculations were conducted using the Vienna ab initio Simulation Package (VASP) code¹ with the projection-augmented wave (PAW) method. The Perdew-Burke-Ernzerhof (PBE)² generalized gradient approximation (GGA) was employed as the exchange-correlation functional for structural relaxations and total-energy calculations of all structures. A cutoff energy of 350 eV and a convergence accuracy of 1 x 10^{-4} eV were used for the plane wave. The atomic stress convergence criterion for ion relaxation was set to be less than 0.005 eV/Å per atom. Data processing and graphical plotting were carried out using VESTA and Origin software.

Fig. S1 Band structures (a,), density of states (b), and charge densities (c) of MA₄InCl₇. Band structures (d,), density of states (e), and charge densities (f) of MA₂KInCl₆.

Fig. S2 XRD patterns of Sb:MA₄InCl₇ (a) and Sb:MA₂KInCl₆ (b) doped with different concentrations of Sb³⁺.

Fig. S3 EDS mapping of N, In, Sb, and Cl element of Sb:MA₄InCl₇.

Fig. S4 EDS mapping of N, K,In, Sb, and Cl element of Sb:MA₂KInCl₆.

Fig. S5 (a) XPS spectrum of MA₄InCl₇ and 10% MA₄InCl₇. (b-e) High-resolution XPS spectra of N 1s, In 3d, Sb 3d and Cl 2p.

Fig. S6 (a) XPS spectrum of MA₂KInCl₆ and 10% MA₂KInCl₆. (b-f) High-resolution XPS spectra of N 1s, K 2p, In 3d, Sb 3d and Cl 2p.

Fig. S7 PL intensity of (a) Sb:MA₄InCl₇ and (b) Sb:MA₂KInCl₆ as a function of excitation powers.

Fig. S8 PLQY of Sb: MA_4InCl_7 (a) and Sb: MA_2KInCl_6 (b) doped with different concentrations of Sb.

Table S1 The PL lifetime	e fitting results of $0\% \sim$	15%Sb-doped MA ₄ InCl ₇ .
--------------------------	---------------------------------	---

Sb ³⁺ /mol%	0.5	1	3	5	10	15		
τ(μs)	7.06	7.05	7.00	6.89	6.81	6.76		
\mathbb{R}^2	0.99	0.99	0.99	0.99	0.99	0.99		
Table S2 The PL lifetime fitting results of $0\% \sim 15\%$ Sb-doped MA ₂ KInCl ₆ .								
Sb ³⁺ /mol%	0.5	1	3	5	10	15		
$\tau(\mu s)$	3.00	3.01	2.97	2.87	2.68	2.60		
R ²	0.99	0.99	0.99	0.99	0.99	0.99		

Fig. S9 PLE spectra (a) and PL spectra (b) of Sb: MA_4InCl_7 at different excitation wavelengths; PLE spectra (c) and PL spectra (d) of Sb: MA_2KInCl_6 at different excitation wavelengths.

Table S3 The bond lengths and bond angles data of Sb-doped MA₄InCl₇ structure at 0, 80, 100, 200,

300, and 400K.							
Sb-dop	ed MA ₄ InCl ₇	0K	80K	100K	200K	300K	400K
	Sb1-Cl13	2.54024	2.55419	2.65605	2.66706	2.47176	2.67559
	Sb1-Cl14	2.54024	2.63445	2.56839	2.58004	2.67497	2.86234
Bond	Sb1-Cl17	2.55783	2.57883	2.57491	2.56849	2.57347	2.57113
length(Å)	Sb1-Cl18	2.55783	2.67359	2.66539	2.70751	2.73053	2.66677
	Sb1-Cl21	2.55788	2.58502	2.67357	2.6457	2.93019	2.69308
	Sb1-Cl22	2.55794	2.6307	2.65538	2.46432	2.78299	2.77101
	Cl13-Sb1-Cl17	90.2231	86.4625	91.9172	91.3514	92.5547	104.5111
	Cl13-Sb1-Cl18	89.7769	97.1232	95.182	101.9801	97.2061	79.0805
	Cl13-Sb1-Cl21	88.9039	88.1263	91.0542	79.1399	100.6001	100.0175
	Cl13-Sb1-Cl22	91.0963	88.102	85.0439	91.3396	84.8746	78.9678
	Cl14-Sb1-Cl17	89.7769	88.7554	89.23	81.883	92.2096	93.9395
Band	Cl14-Sb1-Cl18	90.2231	87.4637	83.3848	84.6293	78.1379	83.2136
angles(°)	Cl14-Sb1-Cl21	91.0961	89.2054	102.482	94.6802	85.4852	82.0855
	Cl14-Sb1-Cl22	88.9037	94.2261	81.3846	94.4368	88.657	97.6995
	Cl17-Sb1-Cl21	88.8392	86.2543	92.1473	86.1387	90.4565	90.9556
	Cl17-Sb1-Cl22	91.1619	89.5378	89.3006	91.1206	94.333	92.8521
	Cl18-Sb1-Cl21	91.1608	89.3961	89.7863	94.1199	87.2928	78.773
	Cl18-Sb1-Cl22	88.8381	95.0242	89.2601	90.7853	87.0378	97.4222

Table S4 The bond lengths and bond angles data of Sb-doped MA_2KInCl_6 structure at 0, 80, 100, 200, 300, and 400K.

Sb-dope	d MA ₂ KInCl ₆	0K	80K	100K	200K	300K	400K
	Sb1-Cl3	2.52474	2.80609	2.79592	2.8968	2.79063	2.69388
	Sb1-Cl6	2.53766	2.68327	2.63658	2.8359	2.69198	2.75503
Bond	Sb1-Cl9	2.53134	2.55521	2.73003	2.5876	2.662	2.59735
length(Å)	Sb1-Cl10	2.55406	2.58951	2.59906	2.48828	2.73268	2.73358
	Sb1-Cl13	2.55717	2.6918	2.64585	2.57604	2.71956	2.58477
	Sb1-Cl16	2.5697	2.6272	2.70363	2.57961	2.66105	2.75196
	Cl3-Sb1-Cl6	92.2389	95.3678	90.7192	86.3066	98.5961	88.5557
	Cl3-Sb1-Cl9	92.6564	92.6767	85.1857	96.1995	94.9449	86.3222
	Cl3-Sb1-Cl13	89.7584	83.4657	90.9989	90.3762	81.8804	97.7936
	Cl3-Sb1-Cl16	86.9198	82.7375	86.5848	88.7675	72.9384	87.7269
	Cl6-Sb1-Cl9	91.6907	95.5413	96.0209	86.5799	80.9247	89.6176
Band	Cl6-Sb1-Cl10	89.9129	87.8167	87.5648	89.3689	104.637	91.5465
angles(°)	Cl6-Sb1-Cl13	87.3661	87.0786	84.2912	85.6002	104.3259	84.6076
	Cl9-Sb1-Cl10	86.6811	86.7387	86.4111	83.0492	88.8986	84.1618
	Cl9-Sb1-Cl16	90.2902	87.6301	96.0209	89.2593	85.406	82.8346
	Cl10-Sb1-Cl13	90.9373	96.9889	97.4132	89.7692	92.1401	91.6896
	Cl10-Sb1-Cl16	90.9498	94.0968	95.6561	95.5023	84.5813	90.9128
	Cl13-Sb1-Cl16	90.6858	89.6485	92.0338	99.1685	88.9878	103.1564

Fig. S10 (a) Crystal structures of MA₄InCl₇; (b-c) absorption, energy loss coefficient, extinction coefficient, reflectivity index and refractive index of pristine MA₄InCl₇.

Fig. S11 (a) Crystal structures of Sb:MA₄InCl₇; (b-c) absorption, energy loss coefficient, extinction coefficient, reflectivity index and refractive index of pristine Sb:MA₄InCl₇.

Fig. S12 (a) Crystal structures of MA₂KInCl₆; (b-c) absorption, energy loss coefficient, extinction coefficient, reflectivity index and refractive index of pristine MA₂KInCl₆.

Fig. S13 (a) Crystal structures of Sb:MA₂KInCl₆; (b-c) absorption, energy loss coefficient, extinction coefficient, reflectivity index and refractive index of pristine Sb:MA₂KInCl₆.

Fig. S14 Structure and PL stability in air, XRD patterns, PL spectra, and thermogravimetric analysis curves of 10%Sb:MA₄InCl₇ (a-c) and 10%Sb:MA₂KInCl₆ (d-f).

Reference

- [1] G. Kresse, J. Furthmuller, Phys Rev B Condens Matter 1996, 54, 11169.
- [2] J. P. Perdew, K. Burke, M. Ernzerhof, Phys Rev Lett 1996, 77, 3865.