Supporting Materials

Novel vallytronic and piezoelectric properties coexisting in Janus MoAZ₃H (A=Ge, Si; Z=N, P, As) monolayer

Xiaolin Cai^{a*}, Guoxing Chen^a, Rui Li^a, Zhixiang Pan^a, Yu Jia^{b, c*}

^aSchool of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China

^bKey Laboratory for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Material Science and Engineering, Henan University, Kaifeng 475004, China ^cInternational Laboratory for Quantum Functional Materials of Henan, and School of Physics and

Microelectronics, Zhengzhou University, Zhengzhou 450001, China

^{*} Address correspondence to E-mail: caixiaolin@hpu.edu.cn, jiayu@henu.edu.cn

Fig. S1 The projection map of each atomic band structure of MoAZ₃H monolayer calculated by PBE function with Fermi level set to 0.

Fig. S2 Band structure diagram of MoAZ₃H monolayers calculated by HSE+SOC function, with Fermi energy level set to 0.

Fig. S3 (a)–(c) are Berry curvature diagrams of Janus MoSiA₃H (A = N, P, and As) ML in Brillouin zone. (d)–(f) are the corresponding Berry curvature curves along the high symmetry path.

Fig. S4 Phonon spectra of the MoSiN₃H, MoSiAs₃H and MoGeN₃H under the tensile strain of 10%.