Supporting Information

Dual-band photodetector based on mixed-dimensional WSe₂/GaN junction

Shuting Chen¹, Hui Wang¹, Yuqing Yang¹², Shishi Liu¹, Lingyu Zhu¹, Xingfu Wang^{1,3*}, Nengjie Huo^{1,3*}

¹School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P.R. China

²School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China

³Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou 510631, P.R. China

*Corresponding authors:

Nengjie Huo, Email: njhuo@m.scnu.edu.cn Xingfu Wang, Email: xfwang@m.scnu.edu.cn

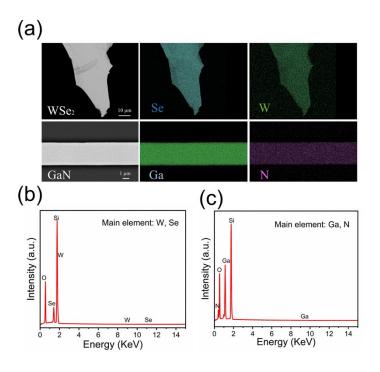


Fig. S1. (a) SEM image of WSe₂ nanosheet and GaN microwires, and corresponding EDS element mapping of Se, W, Ga and N atoms, respectively. (b) The corresponding EDS spectrum of WSe₂ nanosheet. (c) The corresponding EDS spectrum of GaN microwire.

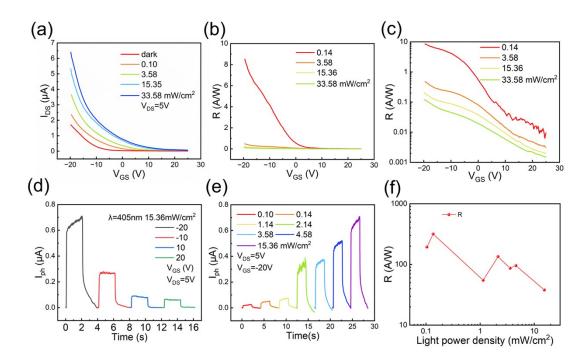


Fig. S2. (a) Transfer characteristic of the WSe₂/GaN JFET under 405 nm light illumination with different light power intensity at the bias of 5V. (b, c) V_{GS} dependent responsivity under variable light power intensit in (b) linear scale and (c) logarithmic scale of of y-axis. (d) Time-dependent photocurrent of the device at 405 nm (15.36mW/cm²) under different V_{GS} . (e) Time-dependent photocurrent with increasing light power density at 405 nm (V_{ds} =5 V, V_{GS} =-20 V). f) Light power density dependent responsivity (R) of the device under 405nm.

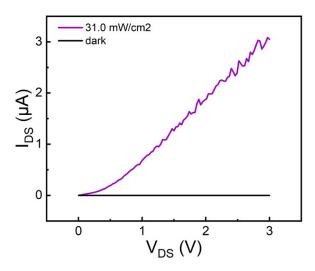


Fig. S3. The I-V characteristic curves of pure GaN under dark and 325 nm light illumination.