Supplementary information for

Ordered growth of Cs₂AgBiBr₆ double perovskite on PEIE-decorated SnO₂ for efficient planar solar cells

Wanjiang Wang^a, Linsong Hou^a, Haihua Hu^b, Binbin Chang^a, Yuqi Yuan^a, Ping Lin^a,

Peng Wang^a, Xiaoping Wu^a, Xuegong Yu^c, Lingbo Xu^{a, *}, and Can Cui^{a, *}

^a Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of

Physics, School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, People's

Republic of China

^b Hangzhou City University, Hangzhou 310015, China

^c State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China

* Corresponding author. Email: xlb@zstu.edu.cn (L. Xu), cancui@zstu.edu.cn (C. Cui)

1 Experimental Section

1.1 Materials

Polyethylenimine, 80% ethoxylated solution (PEIE, 37 wt.% in water, average Mw~110000), 2-propanol (IPA, \geq 99.5%), 4-tertbutylpyridine (4-TBP, \geq 96%), acetonitrile (ACN, \geq 99.8%) and dimethyl sulfoxide (DMSO, 99.9%) were purchased from Sigma-Aldrich. SnO₂ (colloidal dispersion, 15 % in H₂O), AgBr (99.5 %) and BiBr₃ (99%) was obtained from Alfa Aesar.2,2',7,7'-Tetr akisn [N, N-di(4-methoxyphenyl) amino] -9,9'-spirobifluorene (Spiro-OMeTAD, \geq 99.5%), LiTFSI (\geq 99.0%) and Co(III)TFSI (\geq 99.0%) and CsBr (99.9%) were purchased from Xi'an Polymer Light Technology Corporation. Chlorobenzene (CB, \geq 99.5%), MoO₃

(≥99.9%), and hydrobromic acid (HBr, 48 wt. % in water) were purchased from Aladdin.

1.2 Preparation of Cs₂AgBiBr₆ powders

Slight modifications were made according to the reported synthesis.¹ First, 852 mg of CsBr, 898 mg of BiBr₃, and 376 mg of AgBr were dissolved in 20 ml of HBr. The solution was stirred at 110 °C for 2 h and then cooled naturally to room temperature. The solution was poured out and the orange powder was removed and washed 3-5 times with ethanol. Finally, the powder was moved to a vacuum drying oven and dried at 70 °C overnight to obtain $Cs_2AgBiBr_6$ crystal powder.

1.3 Preparation of Cs₂AgBiBr₆ films

531 mg (0.5 mmol) of $Cs_2AgBiBr_6$ powder was dissolved in 1 ml DMSO to formulate a 0.5 M precursor solution. The precursor must be stirred at 80 °C for over 3 h to ensure complete powder dissolution. The PEIE is diluted to different concentrations and named PEIE-x. For example, PEIE-0.2 means that the concentration of PEIE in solution is 0.2 mg/ml. The substrate was treated with ultraviolet-O₃ for 20 min before spin coating. The PEIE-x solution was spin-coated on the substrate at 4000 rpm for 30 s, then annealed at 100°C for 10min. Following ultraviolet-O₃ treatment for 15 min, they were transferred to an N₂ glove box to prepare Cs₂AgBiBr₆ films. The substrate and Cs₂AgBiBr₆ precursor were preheated on a heating table at 80 °C for more than 10 min. The Cs₂AgBiBr₆ precursor was spin-coated on the substrate at 2000 rpm for 60 s, and 250 µl IPA was added dropwise as an anti-solvent 20 s before the end of the spincoating process. After the spin coating, the thin films were annealed at 250 °C for 5 min.

1.4 Fabrication of solar cell devices

This work adopts the n-i-p planar solar cell structure based on SnO₂ as the electron transport layer. Firstly, the etched ITO glass was cleaned by ultrasonic cleaning with deionized water, ethanol, acetone, and isopropanol in sequence for 20 min, and treated with ultraviolet-O₃ for 20 min. Next, the SnO₂ precursor solution (The SnO₂ stock solution was dissolved with deionized water at a volume ratio of 1:4 and stirred at room temperature for 6 h to obtain the SnO₂ precursor) was spin-coated on ITO at 3000 rpm for 30 s, followed by annealing at 150 °C for 30 min. Then, the Cs₂AgBiBr₆ absorber layer was prepared following procedure **1.3** after the films were treated with ultraviolet-O₃ for 20 min. Next, Spiro-OMeTAD solution was spin-coated onto the Cs₂AgBiBr₆ film at 3000 rpm for 35 s. For Spiro-OMeTAD solution, the Spiro-OMeTAD (72.25 mg) was dissolved in 1 mL of chlorobenzene, 18.5 μ l of TBP and 17.5 μ l of 520 mg/mL Li-TFSI. Finally, 10 nm of MoO₃ and 100 nm of silver electrode were vaporized on the hole transport layer at 10⁻³ Pa. The effective area of the device was controlled to 0.1 cm² by a mask plate.

1.5 Characterizations

Scanning electron microscope (SEM) images were taken on a Hitachi S4800 (Japan) using a 3 kV accelerating voltage. X-ray diffraction (XRD) patterns of perovskite films were examined by a Bruker D8 Advance diffractometer with Cu K α radiation ($\lambda = 0.154056$ nm). The spectrophotometer measured the ultraviolet-visible (UV-vis) absorption spectra (UV-2600, Shimadzu). The steady-state

photoluminescence (PL) and time-resolved photoluminescence (TRPL) data were measured by the PL spectrometer (Fluotime300, PicoQuant). The excitation wavelength of PL and TRPL measurements is 375 nm. Raman spectra of Cs₂AgBiBr₆ films were recorded by laser confocal microraman spectrometer; a diode-pumped solidstate laser with a wavelength of 532.0 nm was used as a source of excitation. The ultraviolet photoelectron spectroscopy (UPS) measurements were performed on an Axis supra (Kratos, Shimadzu). The photoelectrons from UPS were counted with a hemispherical analyzer with an overall resolution of 0.05 eV, as determined from the width of the Fermi step measured on a gold substrate cleaned by Ar-ion sputtering. All the UPS measurements of the onset of photoemission for determining the work function were done using standard procedures with a - 9.8 V bias applied to the sample. The current density-voltage (J-V) curves were measured by a Keithley 2400 source meter under the illumination of AM 1.5 G (100 mW/cm²) provided by a solar simulator (Zolix, SolarIV-1000A). The external quantum efficiency (EQE) was measured in the wavelength range of 300-850 nm, using an EQE measurement system (Model QEX10, PV Measurements). Electrochemical impedance spectroscopy (EIS) was measured by an electrochemical workstation (VersaSTAT 4, Princeton Applied Research) in the dark with a frequency ranging from 1 Hz to 1 MHz.

2 Figures

Fig. S1. Color conversions of Cs₂AgBiBr₆ films on different substrates during thermal treatment.

Each image is taken at an interval of 1 second.

Fig. S2. Tauc plots of Cs₂AgBiBr₆ films on different substrates.

Fig. S3. (a) Raman spectra of $Cs_2AgBiBr_6$ films on different substrates. The Raman spectra of $Cs_2AgBiBr_6$ consist three peaks at 74 cm⁻¹, 139 cm⁻¹, and 180 cm⁻¹, which correspond to T_{2g} mode, E_g mode, and A_{1g} mode, respectively^{2, 3}. The schematic diagrams of these modes are shown in **Fig. S3 (b-d)**. The E_g mode is due to the asymmetric stretching around the Bi atom. The T_{2g} mode is related to the shear motion of Cs atoms around the Br. The A_{1g} longitudinal optical (LO) phonon mode is related to the symmetric stretching vibration of the Bi atoms around the Br atom in the octahedron.

Fig. S4. (a) UV-vis absorption spectra of SnO_2 and $SnO_2/PEIE$ films. (b) Tauc plots of SnO_2 and $SnO_2/PEIE$ films.

Fig. S5. Secondary electron cutoff regions (a) and onset regions (b) of UPS spectra for $Cs_2AgBiBr_6$ films on different substrates.

Fig. S6. (a) The cross-sectional SEM and (b) schematic structure of Cs₂AgBiBr₆PSCs.

Fig. S7. (a-d) Top-view SEM images of $Cs_2AgBiBr_6$ films deposited on substrates with different PEIE concentrations. (e) Average grain size of $Cs_2AgBiBr_6$ films on different substrates. (f) XRD patterns of $Cs_2AgBiBr_6$ films on different substrates.

Fig. S8. Long-term stability test of (a) *Voc*, (b) *Jsc*, and (c) FF (temperature:20~30 °C, 20~30 % relative humidity).

3 Tables

Sample	τ (ns)	β	<7> (ns)
Glass/Cs2AgBiBr6	4.21	0.40	13.51
SnO ₂ /Cs ₂ AgBiBr ₆	1.88	0.49	3.84
SnO ₂ /PEIE/Cs ₂ AgBiBr ₆	0.36	0.40	1.19

Table S1. Fitting parameters for TRPL measurements of $Cs_2AgBiBr_6$ films deposited on different substrates.

4 Methods of analysis

4.1 TRPL analysis

The decay traces are fitted with a stretched-exponential function in the form of 4, 5:

$$I(t) = I_0 e^{-(t/\tau)^{\beta}}$$
 (Eq. S1)

where I(t) is the luminescence intensity changing with time, I_0 is the initial luminescence intensity, τ is the time taken for luminescence intensity to decrease to 1/e of I_0 , and β is the distribution coefficient. The formula of average carrier lifetime $< \tau >$ is

$$<\tau>=\frac{\tau}{\beta}\Gamma(\frac{1}{\beta})$$
 (Eq. S2)

4.2 SCLC analysis

In the SCLC test, the linear relation of J-V curve in low voltage range is ohmic region. As the voltage continues to increase, the current density rises sharply and the J-V curve deviates from linear relationship, which goes into the trap filling limit (TFL) region. Once all the traps are filled by the carriers, the J-V curve turns into a quadratic relationship, which is trap-free region. The trap filling limit voltage (V_{TFL}) is defined as the voltage at the intersection of two fitting lines in the ohmic region and the TFL region. The defect density of states of $Cs_2AgBiBr_6$ films can be calculated by the following equation⁶:

$$N_t = \frac{2\varepsilon\varepsilon_0 V_{TFL}}{eL^2}$$
(Eq. S3)

where N_t is the defect density, e is the electronic charge, L is the thickness of $Cs_2AgBiBr_6$, V_{TFL} is the limit voltage of defect filling, ε represents the relative permittivity of $Cs_2AgBiBr_6$, ε_0 represents the vacuum permittivity.

The charge mobility (μ) could be calculated from the trap-free region of the SCLC curve using the Mott-Gurney law with the following equation⁷:

$$\mu = \frac{8JL^3}{9\varepsilon_0 \varepsilon V^2}$$
(Eq. S4)

where μ , J, L, ε_0 , ε , and V is the charge mobility, current density, thickness of the Cs₂AgBiBr₆ film, vacuum permittivity, relative permittivity of Cs₂AgBiBr₆, and voltage, respectively.

4.3 Mott-Schottky analysis

The built-in potential (V_{bi}) can be extracted from the capacitance-voltage measurement with the Mott-Schottky equation⁸:

$$C^{2} = \frac{2(V_{bi} - V)}{\varepsilon_{0}\varepsilon e N A^{2}}$$
(Eq. S5)

where C, V_{bi} , V, ε_0 , ε , e, N, and A is the capacitance, built-in potential, applied bias, vacuum permittivity, relative permittivity of Cs₂AgBiBr₆, elementary charge, carrier density, and active area of PSC, respectively.

References

- F. Igbari, R. Wang, Z.-K. Wang, X.-J. Ma, Q. Wang, K.-L. Wang, Y. Zhang, L. S. Liao and Y. Yang, *Nano Lett.*, 2019, **19**, 2066-2073.
- P. Pistor, M. Meyns, M. Guc, H.-C. Wang, M. A. L. Marques, X. Alcobé, A. Cabot and V. Izquierdo-Roca, *Scr. Mater.*, 2020, 184, 24-29.
- S. J. Zelewski, J. M. Urban, A. Surrente, D. K. Maude, A. Kuc, L. Schade, R. D. Johnson, M. Dollmann, P. K. Nayak, H. J. Snaith, P. Radaelli, R. Kudrawiec, R. J. Nicholas, P. Plochocka and M. Baranowski, *J. Mater. Chem. C*, 2019, 7, 8350-8356.
- L. Zhang, B. Han, Z. Liu, Y. Yao, L. Xu, P. Wang, P. Lin, X. Wu, X. Yu and C. Cui, *J. Alloys Compd.*, 2022, **911**, 164972.
- L. Xu, Y. Qiang, K. Xiao, Y. Zhang, J. Xie, C. Cui, P. Lin, P. Wang, X. Yu, F. Wu and D. Yang, *Appl. Phys. Lett.*, 2017, **110**, 233113.
- H. Wang, S. Cao, B. Yang, H. Li, M. Wang, X. Hu, K. Sun and Z. Zang, Sol. RRL., 2020, 4, 1900363.
- J. Dou, C. Zhu, H. Wang, Y. Han, S. Ma, X. Niu, N. Li, C. Shi, Z. Qiu, H. Zhou,
 Y. Bai and Q. Chen, *Adv. Mater.*, 2021, **33**, 2102947.
- J. Qiu, Q. Zhou, D. Jia, Y. Wang, S. Li and X. Zhang, *J. Mater. Chem. A*, 2022, 10, 1821-1830.