Supporting Information

Isomeric effect of thienopyridazine-based iridium complexes

Zhang Jia-Ling, ${ }^{\dagger \mathrm{a}}$ Zhang Fu-Jun, ${ }^{\dagger \mathrm{b}}$ Xu Hui-Hui, ${ }^{\dagger \mathrm{a}}$ Li Zheng-Ze, ${ }^{\text {b }}$ Sheng Ren, ${ }^{c}$ Zhang Qian-Feng, ${ }^{\text {a }}$ Tong Bi-Hai, ${ }^{* a, d}$ Chen Ping*b,c and Kong Hui*a
a Institute of Molecular Engineering and Applied Chemistry, School of Metallurgy Engineering, Anhui University of Technology, Maanshan, 243002, Anhui, China. E-mail: tongbihai@163.com, konghui@ahut.edu.cn.
${ }^{\mathrm{b}}$ State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012. E-mail: pingchen@jlu.edu.cn.
${ }^{c}$ Shandong College Laboratory of Optoelectronic Functional Materials and Optoelectronic Devices, Institute of Science and Technology for Opto-Electronic Information, Yantai University, Yantai, 264005, Shandong, China.
${ }^{d}$ State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China.
\dagger These authors contributed equally to this work.
* Corresponding authors.

Contents:

1. General descriptions
2. Photophysical properties
3. The ${ }^{1} \mathrm{H} /{ }^{19} \mathrm{~F}-\mathrm{NMR}$ and high resolution mass spectrometers (HRMS) spectra of all new compounds.
4. The detailed crystallographic data of IrM.
5. References

1. General descriptions

1.1. Materials and characterization

All the materials and solvents were obtained commercially and used as received without further purification. Proton NMR spectra were measured on a Bruker AV400 spectrometer. High resolution mass spectra (HRMS) were recorded with a TOF $5600^{\text {plus }}$ mass spectrometer. X-ray crystallography diffraction was carried out on a Bruker SMART Apex CCD diffractometer. Cyclic voltammetry (CV) was measured on a CHI1140B Electrochemical Analyzer through a three-electrode system with a glassy carbon disk as the working electrode, platinum plate as the counter electrode and $\mathrm{Ag} / \mathrm{AgCl}$ as the reference electrode. UV/Vis absorption spectra were recorded on a Purkinje General TU-1901 spectrophotometer. The PL spectra were recorded on a PerkinElmer LS-55 fluorescence spectrophotometer. The PL quantum efficiency and lifetime were measured with an Edinburgh FLS980 instrument.

1.2. Computational methodology

B3LYP functional was used to optimize the geometrical structures of ground state $\left(\mathrm{S}_{0}\right) \cdot{ }^{[1]} \mathrm{A}$ "double- $\xi "$ quality basis set consisting of Hay and Wadt's effective core potentials (ECP), LANL2DZ, ${ }^{[2]}$ was employed to the Ir atom. $6-31 \mathrm{G}(\mathrm{d})$ basis set ${ }^{[3]}$ was applied to other nonmetallic atoms. The solvent effect in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ medium was considered throughout the calculations. Combined with VMD program, ${ }^{[5]}$ the molecular orbital was visualized by Multiwfn code. ${ }^{[4]}$ The frontier molecular orbital (FMO) distribution in molecules was analyzed by Multiwfn using Mulliken population analysis. Gaussian 16 software package was used for calculations. ${ }^{[6]}$

1.3. OLED fabrication

The OLEDs were grown on pre-patterned ITO coated glass ($\approx 20 \Omega$ square ${ }^{-1}$). Before depositing into the evaporation system, the ITO substrates were cleaned with acetone, ethyl alcohol, and deionized water by ultrasonic cleaning machine for 20 min . All the devices were deposited sequentially under fine vacuum of $8 \times 10^{-5} \mathrm{~Pa}$. The organic transport materials were grown by the rate of $0.08-0.15 \mathrm{~nm} \mathrm{~s}^{-1}$, while organic dopants, AlQ_{3} were deposited at the rate of $0.02-0.15 \AA \mathrm{~s}^{-1}$, Al was deposited by the rate of $3 \AA \mathrm{~s}^{-1}$. The CIE coordinates, luminance, and EL spectra were carried out by a PR655 spectra-scan photometer simultaneously. The current density-voltage
characteristics were tested by a programmable Keithley source-measure 2400 and PR655 spectra-scan.

1.4. Synthetic routes of key intermediates

Scheme S1 Synthetic routes of intermediates: i) Mg, THF, $40{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ii) 3-Methylthiophene-2-formaldehyde, THF, r. t., 2 h; iii) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r. t., 12 h ; iv) NBS, dibenzoyl peroxide, CCl_{4}, reflux, 12 h ; v) AgNO_{3}, ethanol/ $\mathrm{H}_{2} \mathrm{O}$, reflux, 1 h ; vi) Jones reagent, acetone, $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$; vii) Hydrazine hydrate, ethanol, reflux, 12 h ; viii) $\mathrm{POCl}_{3}, \mathrm{CHCl}_{3}$, reflux, 12 h . ix) $\mathrm{NHMe}(\mathrm{OMe}), \mathrm{PCl}_{3}$, toluene, $60{ }^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$; x) (3-(Trifluoromethyl)phenyl)magnesium bromide, THF, r. t., 2 h.

General preparation process of ketone intermediates. To a solution of Grignard reagents (40 $\mathrm{mmol})$ prepared from brominated aromatic hydrocarbons and magnesium in dry THF (40 mL), the solution of 3-methylthiophene-2-formaldehyde ($2.52 \mathrm{~g}, 20 \mathrm{mmol}$) in dry THF (20 mL) was added at room temperature (r. t.), and the resulting mixture was stirred at this temperature for 2 h . The reaction was quenched by the addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The mixture was extracted with EtOAc ($3 \times 40 \mathrm{~mL}$). The combined organic extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The alcohol intermediate crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and Dess-Martin periodinane ($12.72 \mathrm{~g}, 30 \mathrm{mmol}$) was added, then the mixture was stirred at r.t. for 12 h . The reaction was quenched by the addition of aq. $\mathrm{NaOH}(0.1 \mathrm{~mol} / \mathrm{L})$ and was extracted with $\mathrm{EtOAc}(3 \times 40 \mathrm{~mL})$. The combined organic extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash column chromatography using petroleum ether/ethyl acetate $(\mathrm{V}: \mathrm{V}=8: 1)$ as the eluent afforded corresponding products.
(3-Methylthiophen-2-yl)(3-(trifluoromethyl)phenyl)methanone (S1a): light yellow liquid, $52 \%{ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR $(376 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-62.56(\mathrm{~s}, 3 \mathrm{~F})$. HRMS $((+)-\mathrm{ESI}): \mathrm{m} / \mathrm{z}=271.0401$ (calcd. 271.0404 for $\left[\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{OS}\right]$ $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$.
(3,5-Bis(trifluoromethyl)phenyl)(3-methylthiophen-2-yl)methanone (S1b): light yellow liquid, 55\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27(\mathrm{~s}, 2 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.00 (s, 6F). HRMS ((+)-ESI): m/z = 339.0280 (calcd. 339.0278 for $\left[\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{OS}\right][\mathrm{M}+\mathrm{H}]^{+}$).

General preparation process of keto acid intermediates. A solution of ketone intermediates (1 $\mathrm{mmol})$, NBS $(0.53,3 \mathrm{mmol})$ and dibenzoyl peroxide $(0.048 \mathrm{~g}, 0.2 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(30 \mathrm{~mL})$ was reflux for 12 h under nitrogen. The precipitate was filtered and washed with dichloromethane, and the resulting solution was washed with sat. NaHCO_{3}. The combined organic extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The dibromomethyl intermediate crude product was dissolved in ethanol $(30 \mathrm{~mL}) / \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and $\mathrm{AgNO}_{3}(0.51 \mathrm{~g}, 3 \mathrm{mmol})$ was added, then the mixture was reflux for 1 h . The precipitate was filtered and washed with ethanol. The resulting solution is evaporated to near dryness, and $50 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ was added, then extracted with EtOAc $(3 \times 40 \mathrm{~mL})$. The combined organic extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The aldehyde ketone intermediate crude product was dissolved in acetone (30 mL) and Jones reagent ($2 \mathrm{~mL}, 2 \mathrm{M}$) was added in an ice water bath and the mixture was stirred at this temperature for 2 h . The reaction was quenched by the addition of methanol and was extracted with EtOAc $(3 \times 40 \mathrm{~mL})$. The combined organic extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol ($\mathrm{V}: \mathrm{V}=20: 1$) as the eluent afforded corresponding products.

2-(3-(Trifluoromethyl)benzoyl)thiophene-3-carboxylic acid (S2a): white solid, 56%. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.88(\mathrm{~s}, 3 \mathrm{~F})$. HRMS ((+)-ESI): $\mathrm{m} / \mathrm{z}=301.0150$ (calcd. 301.0146 for $\left.\left[\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}\right][\mathrm{M}+\mathrm{H}]^{+}\right)$.

2-(3,5-Bis(trifluoromethyl)benzoyl)thiophene-3-carboxylic acid (S2b): white solid, $53 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~s}, 2 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{q}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-63.02(\mathrm{~s}, 6 \mathrm{~F})$. HRMS $\left((+)\right.$-ESI): $\mathrm{m} / \mathrm{z}=369.0020$ (calcd. 369.0020 for $\left[\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{~F}_{6} \mathrm{O}_{3} \mathrm{~S}\right]$
$[\mathrm{M}+\mathrm{H}]^{+}$.
Synthesis of amide intermediates S1c and S2c.
$\mathrm{N}^{3}, \mathrm{~N}^{4}$-dimethoxy- $\mathrm{N}^{3}, \mathrm{~N}^{4}$-dimethylthiophene-3,4-dicarboxamide (S1c): A solution of $\mathrm{NHMe}(\mathrm{OMe})$ $(14.17 \mathrm{~g}, 232.3 \mathrm{mmol})$ and thiophene-3,4-dicarboxylic acid $(4.00 \mathrm{~g}, 23.2 \mathrm{mmol})$ was stirred in dry toluene $(150 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ for $10 \mathrm{~min} . \mathrm{PCl}_{3}(4.79 \mathrm{~g}, 34.9 \mathrm{mmol})$ was then added dropwise to the mixture. The mixture was warmed to r.t. slowly and then stirred at $60^{\circ} \mathrm{C}$ for 1.5 h . Then the mixture was cooled to r.t. and quenched with saturated NaHCO_{3} aqueous solution and extracted with EtOAc. The combined organic layers were dried and the solvent was removed in vacuum to give the pure product ($5.73 \mathrm{~g}, 87 \%$) as light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 6 \mathrm{H})$, $3.29(\mathrm{~s}, 6 \mathrm{H})$. HRMS $((+)-\mathrm{ESI}): \mathrm{m} / \mathrm{z}=281.0608$ (calcd. 281.0572 for $\left.\left[\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}\right][\mathrm{M}+\mathrm{Na}]^{+}\right)$. N -methoxy-N-methyl-4-(3-(trifluoromethyl)benzoyl)thiophene-3-carboxamide) (S2c): To a solution of Grignard reagent $(10.0 \mathrm{mmol})$ prepared from 3-bromotrifluoromethylbenzene and magnesium in dry THF (15 mL), the solution of S1c $(0.50 \mathrm{~g}, 2.0 \mathrm{mmol})$ in dry THF $(5 \mathrm{~mL})$ was added at r.t., and the resulting mixture was stirred at this temperature for 2 h . The reaction was quenched by the addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The mixture was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ as the eluent afforded $\mathrm{S} 2 \mathrm{c}(0.47 \mathrm{~g}, 65 \%)$ as white solid. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.72(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-62.75(\mathrm{~s}, 3 \mathrm{~F}) . \operatorname{HRMS}((+)-\mathrm{ESI}): \mathrm{m} / \mathrm{z}=366.0383$ (calcd. 366.0388 for $\left[\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NNaO}_{3} \mathrm{~S}\right]$ $[\mathrm{M}+\mathrm{Na}]^{+}$.

General preparation process of pyridazinone intermediates. A solution of keto acid intermediates (1 mmol) and $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.50 \mathrm{~g}, 10 \mathrm{mmol})$ in ethanol $(15 \mathrm{~mL})$ was reflux for 12 h under nitrogen. The precipitate of product was filtered and washed with ethanol, then dried in an oven. 7-(3-(Trifluoromethyl)phenyl)thieno[2,3-d]pyridazin-4(5H)-one (S3a): yellow solid, 82\%. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 13.20(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.84(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.31(\mathrm{~s}, 3 \mathrm{~F})$. HRMS ((+)-ESI): m/z = 297.0303 (calcd. 297.0309 for $\left[\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{OS}\right][\mathrm{M}+\mathrm{H}]^{+}$. 7-(3,5-Bis(trifluoromethyl)phenyl)thieno[2,3-d]pyridazin-4(5H)-one (S3b): yellow solid, $81 \% .{ }^{1} \mathrm{H}$

NMR (400 MHz, DMSO-d6) $\delta 13.32(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{~s}, 2 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.77(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-61.42(\mathrm{~s}, 3 \mathrm{~F}),-61.43(\mathrm{~s}, 3 \mathrm{~F})$. HRMS $((+)-\mathrm{ESI}): \mathrm{m} / \mathrm{z}=365.0181$ (calcd. 365.0183 for $\left[\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{OS}\right][\mathrm{M}+\mathrm{H}]^{+}$.

4-(3-(Trifluoromethyl)phenyl)thieno[3,4-d]pyridazin-1(2H)-one (S3c): white solid, $70 \%{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6)) $\delta 12.39(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR $(376 \mathrm{MHz}$, DMSO-d $\left.)^{\prime}\right) \delta-61.14(\mathrm{~s}, 3 \mathrm{~F})$. HRMS $((+)-\mathrm{ESI}): \mathrm{m} / \mathrm{z}=297.0320$ (calcd. 297.0309 for $\left[\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F} 3 \mathrm{~N}_{2} \mathrm{OS}\right]$ $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$.

General preparation process of chloro intermediates. A solution of pyridazinone intermediates (2 mmol) and $\mathrm{POCl}_{3}(3.06 \mathrm{~g}, 20 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ was reflux for 12 h under nitrogen. The reaction was quenched by the addition of aqueous ammonia and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40$ $\mathrm{mL})$. The combined organic extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent afforded corresponding products.

4-Chloro-7-(3-(trifluoromethyl)phenyl)thieno[2,3-d]pyridazine (Za): white solid, 91%. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.74(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.72(\mathrm{~s}$, 3F).

4-(3,5-Bis(trifluoromethyl)phenyl)-7-chlorothieno[2,3-d]pyridazine (Zb): white solid, $88 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.61(\mathrm{~s}, 2 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.91(\mathrm{~s}, 6 \mathrm{~F})$.

1-Chloro-4-(3-(trifluoromethyl)phenyl)thieno[3,4-d]pyridazine (Zc): yellow solid, 59\%. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.64(\mathrm{~s}$, 3F).

2. Photophysical properties

Fig. S1 Thermal gravimetric spectra of as-prepared complexes.

Fig. S2 The emission decay curves (a) of complexes IrM and IrP in PMMA films at a conc. of $1 \mathrm{wt} \%$, and the PL spectra (b) of complexes IrM and IrP in powders.

Fig. S3 The device configurations and the energy level diagrams of used materials.
3. The ${ }^{1} \mathbf{H} /{ }^{19} \mathbf{F}$ NMR and high resolution mass spectrometers (HRMS) spectra of all new compounds.

S1a:

๗

S1b:

$\stackrel{7}{3}$

$\stackrel{8}{\substack{8 \\ 1 \\ 1}}$

S1c:

S2a:

∞
$\stackrel{\infty}{\circ}$

S2b:

S2c:

S3a:

$\stackrel{\square}{3}$

S3b:

$\stackrel{y}{9}$

S3c:
$\stackrel{\stackrel{3}{3}}{\stackrel{1}{1}}$

Za :

$$
\underset{\infty}{\infty} \underset{\infty}{\infty} \underset{\substack{\infty \\ \infty}}{\infty}
$$

N
ì
in

Zb :

Zc:

LaH:

LbH:

LcH:

IrM:

IrP:

$\stackrel{\substack{2 \\ \vdots \\ i}}{\substack{1}}$

IrC:

4. The detailed crystallographic data of $\operatorname{Ir} M$.

Crystallographic and refinement data for complexes

compound	IrM
Empirical formula	$\mathrm{C}_{63} \mathrm{H}_{24} \mathrm{~F}_{27} \mathrm{IrN} \mathrm{S}_{6} \mathrm{~S}_{3}$
Formula weight	1666.21
Temperature	193.00 K
Wavelength	0.71073 A
Crystal system	Trigonal
Space group	R -3
Unit cell dimensions	$\mathrm{a}=17.0640(6) \AA$
.	$\alpha=90^{\circ}$
	$\mathrm{b}=17.0640(6) \AA$
	$\beta=90^{\circ}$
	$\mathrm{c}=42.016(3) \AA$
	$\gamma=120^{\circ}$.
Volume	$10595.2(11) \AA^{3}$
Z	6
Density (calculated)	$1.727 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.247 \mathrm{~mm}^{-1}$
$F(000)$	5376
Theta range for data collection	2.379 to 27.471°.
Index ranges	$-22<=\mathrm{h}<=19,-21<=\mathrm{k}<=22$
	$-54<=1<=53$
Reflections collected	52585
Independent reflections	$5415[\mathrm{R}(\mathrm{int})=0.0589]$
Completeness to theta $=25.242^{\circ}$	99.9 \%
Absorption correction	Semi-empirical from
	equivalents
Max. and min. transmission	0.7456 and 0.6036

Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$5415 / 0 / 301$
Goodness-of-fit on F^{2}	1.079
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0408, \mathrm{wR} 2=0.1139$
R indices (all data)	$\mathrm{R} 1=0.0468, \mathrm{wR} 2=0.1189$
Extinction coefficient	n / a
Largest diff. peak and hole	1.309 and $-0.750 \mathrm{e} . \AA^{-3}$

5. References

[1] Becke AD. Density-functional thermochemistry. III. The role of exact exchange, J Chem Phys, 1993; 98: 5648-5652; b) Lee C, Yang W and Parr RG. Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988; 37: 785-789.
[2] Hay PJ and Wadt WRJ. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. Chem Phys, 1985; 82: 270-283; b) Wadt WR and Hay PJJ. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. Chem Phys, 1985; 82: 284-298; c) Hay PJ and Wadt WR. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys, 1985; 82: 299-310.
[3] Hariharan PC and Pople JA. Accuracy of AH n equilibrium geometries by single determinant molecular orbital theory. Mol Phys, 1974; 27: 209-214.
[4] Lu T and Chen FW. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem, 2012; 33: 580-592.
[5] Humphrey W, Dalke A and Schulten K. VMD - visual molecular dynamics. J Molec Graphics, 1996; 14: 33-38.
[6] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 16, Rev. B.01,Gaussian, Inc., Wallingford CT, 2016.

