SUPPORTING INFORMATION

Hansen Solubility Approach Towards Green Solvent Processing:

N-Channel Organic Field-Effect Transistors in Ambient

Ibrahim Deneme, Tevhide Ayça Yıldız, Nilgun Kayaci, Hakan Usta*

Department of Nanotechnology Engineering, Abdullah Gül University, 38080 Kayseri, Turkey.

* Address correspondence to: Prof. Hakan Usta (hakan.usta@agu.edu.tr)

Table S1. The molecular structures, OFET device configurations/performances, semiconductor thin-film deposition methods, and the green solvents employed during deposition for previously reported solution-processable *n*-type and *p*-type semiconductors. The abbreviated names for each molecular structure are presented as indicated in their respective references.

Molecular Structure	Solution- based depositio n method	Green Solvent	OFET Performance I _{on} /I _{off} , µ(cm ² /V·s), V _{th} (V)	OFET Device Configuration	OFET Character. Environment	References
C ₈ H ₁₇ -N O O	Solution- shearing	Anisole	1.5×10 ⁷ , 0.13, 36 (<i>n</i> -channel)	Si/SiO ₂ /PS-brush/ PTCDI- C ₈ /Au	Vacuum	
PTCDI-C ₈						
$c_{3}F_{7}H_{2}C-N$ NC $PDIF-CN_{2}$	Solution- shearing	Purasolv EHL Methyl laurate	2.3×10 ³ , 0.069, -32 (<i>n</i> -channel) 1.3×10 ² , 0.000094, -52 (<i>n</i> -channel)	Si/SiO ₂ /PS-brush/ PDIF- CN 2/Au	Vacuum	Ho et al.[1]
		n-Amyl acetate	3.4×10 ² , 0.000010, -52 (<i>n</i> -channel)			

	Solution- shearing	t-Amyl methyl ether Anisole Isopropyl acetate	5.1×10 ⁴ , 1.40, -32 (<i>p</i> -channel) 4.4×10 ⁵ ,1.90, -33 (<i>p</i> -channel) 2.2×10 ⁴ ,0.67, -33 (<i>p</i> -channel)	Si/SiO2/PS-brush/ TIPS- PEN /Au	Vacuum	
)—si—		Isobutyl acetate	3.7×10 ⁴ , 2.6, -29 (<i>p</i> -channel)			
TIPS-PEN		Dimethyl Carbonate	4.6×10 ⁴ , 1.3, -25 (<i>p</i> -channel)			Ho <i>et al.</i> [1]
		t-Amyl methyl ether	3.5×10 ^{8,} 0.73, -30 (<i>p</i> -channel)			
~ S	Solution- shearing	Isobutyl acetate	4.6×10 ⁶ , 0.057, -31 (<i>p</i> -channel)			
C ₈ H ₁₇ C ₈ H ₁₇		Isopropyl acetate	2.0×10 ⁸ , 0.92, -56 (<i>p</i> -channel)	Si/SiO ₂ /PS-brush/C ₈ -BTBT /Au	Vacuum	
C ₈ -BTBT	Dimethyl Carbonate		2.3×10 ⁶ , 0.031, -19 (<i>p</i> -channel)			
		Anisole	1.1×10 ⁷ , 0.92, -38 (<i>p</i> -channel)			

$\mathbf{C}_{10}H_{21}$ $\mathbf{C}_{10}H_{21}$ $\mathbf{C}_{10}H_{21}$ $\mathbf{C}_{10}H_{21}$ $\mathbf{C}_{10}H_{21}$ $\mathbf{C}_{10}H_{21}$ $\mathbf{P(NDI2OD-T2)}$	Spin- coating	Chloroform/2- methyl tetrahydro furan	1.05-1.25×10 ⁴ , 0.086-0.11, 1.6-1.9 (<i>n</i> -channel)	Si/SiO2/PS- brush/ P(NDI2OD-T2) /Au	Vacuum	
Joint Joint <t< td=""><td>Solution- shearing</td><td>Toluene⁄ n-amyl acetate</td><td>1.67-3.31×10⁷, 1.71-2.61, -23-(-16) (<i>p</i>- channel)</td><td>Si/SiO₂/PS-brush/TIPS- pentacene/Au</td><td>Vacuum</td><td>Lee <i>et al</i>.[3]</td></t<>	Solution- shearing	Toluene⁄ n-amyl acetate	1.67-3.31×10 ⁷ , 1.71-2.61, -23-(-16) (<i>p</i> - channel)	Si/SiO ₂ /PS-brush/ TIPS- pentacene/Au	Vacuum	Lee <i>et al</i> .[3]
$C_8H_{17} \longrightarrow C_8H_{17}$ C_8-BTBT	Solution- shearing	Chloroform/2- methyl tetrahydro furan	2.85-9.81×10 ⁷ , 1.84-2.10, -30 (<i>p</i> -channel)	Si/SiO2/PS-brush/C8- BTBT/Au	Vacuum	

$ \begin{array}{c} C_8H_{17} \\ O + V + O \\ + + + O \\ + + + + + O \\ + + + + + + + O \\ + + + + + + + + O \\ + + + + + + + + + O \\ + + + + + + + + + + + + O \\ + + + + + + + + + + + + + + + + + + $	Solution- shearing	Anisole	$(1.5 \pm 0.7) \times 10^5,$ 0.31, 29±0.7 (<i>n</i> -channel)	Si/SiO2/Shellac/ PTCDI- C8/Au	Vacuum	
)−si–(Schutier	Tert-amyl methyl ether	(7.0±3.5)×10 ⁶ , 0.61, -31±2.3 (<i>p</i> -channel)			Lee <i>et al</i> .[4]
	shearing	Isobutyl acetate	(19±9.1)×10 ⁶ , 1.52, -30±3.8 (<i>p</i> -channel)	Si/SiO ₂ /Shellac/ TIPS- pentacene /Au	Vacuum	
TIPS-pentacene		Anisole	(4.0±2.5)×10 ⁶ , 1.11, -25±8.0 (<i>p</i> -channel)			

$C \rightarrow C \rightarrow C_{10}$ Ph-BTBT-C ₁₀	Solution- shearing	Anisole Cyclohexanone Diethyl Carbonate	10 ⁴ -10 ⁵ , 0.01-3.96, -23-(-5) (<i>p</i> -channel) 10 ⁴ -10 ⁹ , 0.01-5.07, -16-(-6) (<i>p</i> -channel) 10 ⁵ -10 ⁹ , 0.04-3.22, -18-(-6) (<i>p</i> -channel)	Si/SiO ₂ /PS-brush/ Ph-BTBT- C ₁₀ /Au	Vacuum	Yun <i>et al</i> .[7]
PEG-IDIDF	Solution- shearing	Ethanol-water	$10^{3}-10^{6},$ $5.53 \times 10^{-4}-2.01 \times 10^{-3},$ $(-1\pm 4)-(1\pm 3) (p-channel)$	Si/SiO2/PVN/ PEG- IDIDF/Au	Under N ₂	Hong <i>et al.</i> [8]

Figure S1. Optical absorption of standard $\beta_{\beta}\beta'$ -C₁₂-TIFDMT solutions (4.55×10⁻⁷-4.55×10⁻⁵ M) in chloroform. Based on the absorbance values recorded at the molecular absorption maximum ($\lambda_{max} = 338$ nm) at different concentrations, a calibration curve (shown in Figure 2(a)) was derived.

e Di	ist Diff Adh/Visc F-	Fit Teas	HPLC	IGC G	C °C Ev	ap Fin	dMols	Grid SM	ILES Help			
No.	Solvent	δD	δP	δH	Score	RED	MVol	CAS	SMILES	P O DIY OSAR 3DO	SFB SFP	SOP
17	Tetrahydrofuran (THF)	16.8	5.7	8	1	1.021*	81.9	109-99-9	C1CCOC1		hand hand	
48	Chlorobenzene	19	4.3	2	1	0.633	102.1	108-90-7	CIC1=CC=	Show Master Dataset		
37	Toluene	18	1.4	2	1	0.958	106.6	108-88-3	CC1=CC=			
24	Methylene Dichloride (Dic	17	7.3	7.1	1	0.964	64.4	75-09-2	[H]C(CI)(CI	and the second sec	D	u.
6	Chloroform	17.8	3.1	5.7	1	0.800	80.5	67-66-3	CIC(CI)(CI)	25	0	л
1	Benzene	18.4	0	2	1	1.000	89.5	71-43-2	C1=CC=C			
97	p-Xylene	17.8	1	3.1	1	0.972	121.1	106-42-3	CC1=CC=			
21	N-Methyl-2-Pyrrolidone (N	18	12.3	7.2	0	1.065	96.6	872-50-4	CN1C(CC	20		
91	Methyl Isobutyl Ketone (M	15.3	6.1	4.1	0	1.345	125.8	108-10-1	CC(CC(C)			
84	Propylene Carbonate	20	18	4.1	0	1.498	85.2	108-32-7	0=C10C(1.5		
8	Ethyl Acetate	15.8	5.3	7.2	0	1.234	98.6	141-78-6	0=(000)00	15		
3	Ethylene Carbonate	18	21.7	5.1	0	2.039	66	96-49-1	0=C10C			
39	Propylene Glycol Monoet	15.6	6.3	7.7	0	1.293	155.1	54839-2	CCOCC(C	10		
253	d-Limonene	17.2	1.8	4.3	0	1.008	162.9	5989-27-5	CC1=CCC	10		
5	Amyl Acetate	15.8	3.3	6.1	0	1.252	148	628-63-7	0=C(0CC			
Clas Data Goo Split Use adius Fit to Sho	aic Hansen O Genetic Ago a points O Double Sphe d is small High/Low @ 0.500 Log fit a for Data fit 6.0 o Exponential @ MVC w Fit Show Distance	nthm F sre Don MVc Sphi Sho ESC OB I Fit E	itting or/Acceptor I Correction ere Rad. Ch w Selected Alert Fit xplorer	r n nk	Possible δ In= 7 Out δD= 20.8 δTot = 22 Fit= 0.99 Core= ±[Wrong In Wrong Ou Tetrahyd	5D bad t= 23 T δP=5.1 2.3 R= 9 0.10, 0 = 0 it= 1 rofuran	fit otal= 3 3 0H=5. 8.3 .45, 0.6 (THF)	0 5 55]		5 9 5 10 15 2	25 25	22.5 20 17.5 15
nside" ouble-l	1 ✓ Info Both only Click Radius 4.0 □ Lim	/ ~ F	ont Medi	ium V						Wireframe 30 Reset		D-Min 125 v P&H-Max

Figure S2. Hansen solubility sphere, parameters, and the fitting accuracy of β , β '-C₁₂-TIFDMT as determined by using the classic Hansen algorithm in the HSPiP Program (5th Edition Version 5.4.08) with a solubility limit of 2 g/L. The Hansen solubility parameters (δ_D , δ_P , δ_H , and R_0) are in MPa^{1/2}, the bad (23) and the good (7) solvents are shown in the 3D Hansen solubility solubility space with the red and blue spheres, respectively.

Figure S3. Hansen solubility parameters calculated for β , β '-C₁₂-TIFDMT by group contribution methodology in the HSPiP software (5th Edition Version 5.4.08) with DIY and Y-MB modules using simplified molecular-input line-entry system (SMILES).

Table S2. The calculation of β_{β} '-C₁₂-TIFDMT mole fraction in varied solvents based on the maximum solubilities measured and the squared interaction distance (Ra²) between β_{β} '-C₁₂-TIFDMT and the solvent HSPs in the 3D Hansen solubility space.

Solvent	Solvent Density (g/mL)	Solvent Molecular Weight (g/mol)	Max. Solubility (g/L)	Semiconductor Molecular Weight (g/mol)	Semiconductor Mole Fraction	Ra	(Ra)2
Acetone	0.791	58.08	0.05	879.19	4.17576E-06	11.65	135.7225
Acetonitrile	0.786	41.05	0	879.19	0	16.43	269.9449
n-Amyl Acetate	0.87	130.18	0.16	879.19	2.72302E-05	10.32	106.5024
Benzene	0.874	78.11	2.01	879.19	0.000204277	8.3	68.89
1-Butanol	0.81	74.12	0.1	879.19	1.04079E-05	14.08	198.2464
t-Butyl Alcohol	0.775	74.12	0.03	879.19	3.2634E-06	14.51	210.5401
Chloroform	1.492	119.38	6.9	879.19	0.000627562	6.58	43.2964
Cyclohexane	0.779	84.16	0.08	879.19	9.8304E-06	11.21	125.6641
Diethyl Ether	0.706	74.12	0.04	879.19	4.77646E-06	12.96	167.9616
Dimethyl Sulfoxide (DMSO)	1.1	78.13	0	879.19	0	12.54	157.2516
1,4-Dioxane	1.034	88.11	1.11	879.19	0.000107572	8.47	71.7409
Ethanol	0.79	46.07	0	879.19	0	17.38	302.0644
Ethyl Acetate	0.902	88.11	0.13	879.19	1.44435E-05	10.15	103.0225
Ethylene Carbonate	1.32	88.06	0	879.19	0	16.86	284.2596
Ethylene Glycol	1.11	62.07	0	879.19	0	22.47	504.9009
Hexanes	0.659	86.18	0.05	879.19	7.43713E-06	14.25	203.0625
d-Limonene	0.84	136.23	0.3	879.19	5.5336E-05	8.32	69.2224
Methanol	0.791	32.04	0.03	879.19	1.38215E-06	21.75	473.0625
Methyl Iso-Butyl Ketone (MIBK)	0.801	100.16	0.14	879.19	1.99112E-05	11.09	122.9881
N-Methyl-2-Pyrrolidone (NMP)	1.028	99.13	0.5	879.19	5.48372E-05	8.74	76.3876
Methylene Chloride	1.325	84.93	4.9	879.19	0.000357111	7.91	62.5681
N,N-Dimethyl Formamide (DMF)	0.944	73.09	0.13	879.19	1.14483E-05	11.92	142.0864
2-Propanol	0.785	60.1	0	879.19	0	14.79	218.7441
Propylene Carbonate	1.204	102.09	0.05	879.19	4.82216E-06	12.38	153.2644
Propylene Glycol Monoethyl Ether Acetate	0.97	132.16	0.08	879.19	1.23974E-05	10.64	113.2096
Tetrahydrofuran	0.889	72.11	5.3	879.19	0.000488736	8.38	70.2244
Toluene	0.865	92.14	6.7	879.19	0.000811095	7.93	62.8849
Xylene	0.861	106.17	5	879.19	0.00070078	8.35	69.7225
Chlorobenzene	1.106	112.56	7.3	879.19	0.000844311	5.24	27.4576
Cyclopentanone	0.951	84.12	0.79	879.19	7.94746E-05	8.42	70.8964

Theoretical calculation of the intercept in the Hansen-adapted Scatchard-Hildebrand regular solution theory equation (1):

$$-\ln x_{OSC} = \frac{v_{OSC}}{RT} \Phi_{solv}^2 R_a^2 + \frac{\Delta H_{fus}}{R} \left(\frac{1}{T} - \frac{1}{T_{mp-OSC}}\right)$$
(1)

By using the thermal properties of the enthalpy of fusion ($\Delta H_{fusion} = 36.45 \text{ kJ/mol}$) and the melting temperature ($T_{mp-OSC} = 504.30 \text{ K}$) for β , β '- C_{12} -TIFDMT (Figure S4),[14] the intercept in equation (1) is calculated to be 6.01. Note that the melting process at 504.30 K leads to a fully isotropic liquid phase, as visually confirmed through conventional melting point measurement. The end-set of the melting temperature is taken as it represents the completion of the melting process.

Figure S4. Differential scanning calorimetry scan of β , β '-C₁₂-TIFDMT at a temperature ramp of 10 °C min⁻¹ under N₂ and the raw data from the instrument.

Table S3. The potential green solvents with Hansen solubility parameters (δ_D , δ_P , δ_H in MPa^{1/2}) and the corresponding specific β , β '-C₁₂-TIFDMT-solvent interaction distance ($R_a = (4\Delta\delta_D^2 + \Delta\delta_P^2 + \Delta\delta_H^2)^{1/2}$ in MPa^{1/2}, in which $\Delta\delta$ for a specific Hansen parameter is " δ_{OSC} - $\delta_{solvent}$ ").

	Green Solvent	CAS Number	δD	δp	$\delta_{\rm H}$	Ra
1	Water	7732-18-5	15.5	16.0	42.3	39.6
2	Pentyl Acetate	628-63-7	15.8	3.3	6.1	10.3
3	Diethyl Carbonate	105-58-8	15.1	6.3	3.5	11.6
4	Anisole	100-66-3	17.8	4.4	6.9	6.3
5	Dimethyl Carbonate	616-38-6	15.5	8.6	9.7	11.7
6	Butyl Acetate	123-86-4	15.8	3.7	6.3	10.2
7	2-Methylanisole	578-58-5	18.3	4.7	4.8	5.2
8	Isobutyl Acetate	110-19-0	15.1	3.7	6.3	11.6
9	Isopropyl Acetate	108-21-4	14.9	4.5	8.2	12.2
10	2-Methyltetrahyrofuran	96-47-9	16.8	4.8	4.6	7.9
11	Cyclohexanone	108-94-1	17.8	8.4	5.1	6.6
12	Dimethyl Succinate	106-65-0	16.1	7.7	8.8	10.1
13	Diethyl Succinate	123-25-1	16.2	6.8	8.7	9.8
14	Methyl Oleate	112-62-9	16.2	3.8	4.5	9.5
15	Ethoxybenzene	103-73-1	18.4	4.5	4.0	5.2
16	Benzyl Alcohol	100-51-6	18.4	6.3	13.7	9.5
17	Cyclohexanol	108-93-0	17.4	4.1	13.5	10.6
18	Diethylene Glycol	111-46-6	16.6	12.0	19.0	17.0
19	Dimethyl Adipate	627-93-0	16.3	6.8	8.5	9.5
20	Triacetin	102-76-1	16.5	4.5	9.1	9.4
21	Triethylene Glycol	112-27-6	16.0	12.5	18.6	17.5

Table S4. The transistor characteristics of p^{++} -Si/SiO₂/PS-brush($M_n = 5 \text{ kDa}$)/ β , β '-C₁₂-TIFDMT/Au OFET devices having the semiconductor layers processed from anisole, 2-methylanisole, ethoxybenzene, and 2-methyltetrahydrofuran. The average electron mobilities given for each condition are based on at least ten different OFET devices measured.

Green Solvent	rpm	Temperature	μavg	Ion/Ioff	VT
	-	(°C)	(μ_{max}) (cm ² V ⁻¹ s ⁻¹)		(V)
		170	3.87×10 ⁻³ (6.72×10 ⁻³)	10 ³ -10 ⁴	11
	1500	190	0.064 (0.178)	10 ⁶ -10 ⁷	2
		200	0.064 (0.122)	10^{6}	24
		170	0.0706	10 ⁵	10
Anisole	1700	190	0.080	106-107	7
		200	0.032	10^{6}	10
		170	0.03755 (0.0575)	10 ⁵	18
	2000	190	0.049	10 ⁵	21
		200	0.056	10^{5} - 10^{6}	33
		170	2.65×10 ⁻³ (3.98×10 ⁻³)	$10^{3}-10^{4}$	20
	1500	190	3.81×10^{-3} (8.87×10 ⁻³)	10 ⁵	15
		200	0.018 (0.022)	10 ⁴ -10 ⁵	36
		170	0.011 (0.033)	10 ⁵	7
2-Me-Anisole	1700	190	0.028 (0.052)	10 ⁵	18
		200	0.030 (0.048)	10^{6}	8
		170	4.00×10^{-3} (9.029×10 ⁻³)	10 ⁵	17
	2000	190	0.051	10 ⁵	27
		200	0.035 (0.101)	106	24

Green Solvent	Rpm	Temperature (°C)	μ _{avg} (μ _{max}) (cm ² V ⁻¹ s ⁻¹)	Ion/Ioff	VT (V)
		170	$\frac{1.28 \times 10^{-3}}{(4.94 \times 10^{-3})}$	$10^4 - 10^5$	13
	1500	190	0.030 (0.060)	10^{5} - 10^{6}	27
		200	0.022 (0.029)	10 ⁵	28
		170	2.24×10 ⁻³ (3.76×10 ⁻³)	10 ³ -10 ⁴	21
Ethoxybenzene	1700	190	0.040 (0.078)	10 ⁶	15
		200	0.014 (0.029)	106	12
		170	4.38×10 ⁻⁴ (6.72×10 ⁻⁴)	10 ² -10 ⁴	20
	2000	190	0.052 (0.089)	10 ⁵ -10 ⁶	18
		200	0.030 (0.064)	10 ⁵ -10 ⁶	29
		170	1.58×10 ⁻³ 3.50×10 ⁻³	10 ⁴ -10 ⁵	16
	1500	190	6.18×10 ⁻³ (9.35×10 ⁻³)	10 ⁵	15
		200	0.013 (0.015)	10 ⁵	14
		170	0.035 (0.089)	10 ⁶	22
2-Me-THF	1700	190	0.045 (0.094)	10 ⁶	13
		200	0.082 (0.116)	10^{6}	13
		170	0.122 (0.192)	10^{5} - 10^{6}	9
	2000	190	0.028 (0.068)	106	15
		200	0.038 (0.059)	106	21

Figure S5. The (*n*-channel) output plots for the p^{++} -Si/SiO₂/PS-brush(M_n = 5 kDa)/ β , β '-C₁₂-TIFDMT/Au OFET devices, having the semiconductor layers processed from anisole (a), 2-methylanisole (b), ethoxybenzene (c), and 2-methyltetrahydrofuran (d).

Figure S6. Forward and backward transfer characteristics of the p^{++} -Si/SiO₂/PS-brush(M_n = 5 kDa)/ β , β '-C₁₂-TIFDMT/Au OFET devices having the semiconductor layers processed from anisole (a), 2-methylanisole (b), ethoxybenzene (c), and 2-methyltetrahydrofuran (d). Channel width and length were 1000 µm and 80 µm, respectively, for all devices.

REFERENCES

- D. Ho, J. Lee, S. Park, Y. Park, K. Cho, F. Campana, D. Lanari, A. Facchetti, S. Y. Seo, C. Kim, A. Marrocchi, and L. Vaccaro, "Green solvents for organic thin-film transistor processing" *J. Mater. Chem. C* 8, 5786–5794 (2020).
- [2] D. H. Harris, S. Brixi, B. S. Gelfand, B. H. Lessard, and G. C. Welch, "A N-H functionalized perylene diimide with strong red-light absorption for green solvent processed organic electronics" *J. Mater. Chem. C* **8**, 9811–9815 (2020).
- [3] Y. Lee, D. Ho, F. Valentini, T. Earmme, A. Marrocchi, L. Vaccaro, and C. Kim, "Improving the charge transport performance of solution-processed organic field-effect transistors using green solvent additives" *J. Mater. Chem. C* **9**, 16506–16515 (2021).
- [4] M. Lee, S. Yun, D. Ho, T. Earmme, A. Marrocchi, L. Vaccaro, and C. Kim, "Green solvent-processed complementary-like inverters based on ambipolar organic thin-film transistors" J. Ind. Eng. Chem. 105, 231–237 (2022).
- [5] H. Opoku, B. Nketia-Yawson, E. S. Shin, and Y. Y. Noh, "Controlling organization of conjugated polymer films from binary solvent mixtures for high performance organic field-effect transistors" *Org. Electron.* **41**, 198–204 (2017).
- [6] H. Opoku, B. Nketia-Yawson, E. S. Shin, and Y. Y. Noh, "Organic field-effect transistors processed by an environmentally friendly non-halogenated solvent blend" *J. Mater. Chem. C* 6, 661–667 (2018).
- [7] S. Yun, A. Marrocchi, L. Vaccaro, and C. Kim, "Effects of solution-shearing process parameters on charge carrier mobility in green solvent-processed organic field-effect transistors" *Synth. Met.* **291**, 117209 (2022).
- [8] S. H. Hong, D. W. Kim, and S. Y. Park, "Aqueous-alcohol-processable indolo[3,2b]indole-based crystalline small molecules for organic field effect transistors with oligo(ethylene glycol) side chains" *Dye. Pigment.* **211**, 111093 (2023).
- [9] B. Lim, H. Sun, J. Lee, and Y. Y. Noh, "High performance solution processed organic field effect transistors with novel diketopyrrolopyrrole-containing small molecules" *Sci. Rep.* 7, 1–8 (Springer US, 2017).
- [10] S. Sanda, R. Nakamichi, T. Nagase, T. Kobayashi, K. Takimiya, Y. Sadamitsu, and H. Naito, "Effect of non-chlorinated solvents on the enhancement of field-effect mobility in dioctylbenzothienobenzothiophene-based top-gate organic transistors processed by spin coating" Org. Electron. 69, 181–189 (2019).
- [11] G. Zhang, W. Zhou, M. Kim, M. Sun, H. Lu, L. Qiu, K. Cho, and Y. Ding, "Acceptordonor-acceptor molecule processed using polar non-halogenated solvents for organic field-effect transistors" *J. Mater. Chem. C* 8, 6496–6502 (2020).
- [12] Z. B. Henson, P. Zalar, X. Chen, G. C. Welch, T. Q. Nguyen, and G. C. Bazan, "Towards environmentally friendly processing of molecular semiconductors" *J. Mater. Chem. A* 1, 11117–11120 (2013).
- [13] D. Corzo, D. Rosas-Villalva, A. C, G. Tostado-Blázquez, E. B. Alexandre, L. H. Hernandez, J. Han, H. Xu, M. Babics, S. De Wolf, and D. Baran, "High-performing organic electronics using terpene green solvents from renewable feedstocks" *Nat. Energy* 8, 62–73 (2023).
- [14] A. Can, İ. Deneme, G. Demirel, and H. Usta, "Solution-Processable Indenofluorenes on Polymer Brush Interlayer: Remarkable N-Channel Field-Effect Transistor Characteristics under Ambient Conditions" ACS Appl. Mater. Interfaces 15, 41666– 41679 (2023).